close

Вход

Забыли?

вход по аккаунту

?

02 модуль 2(5)

код для вставкиСкачать
Модуль 2. Аналитическая геометрия.
Лабораторный практикум 2.2. Плоскость и прямая в пространстве.
Уравнения прямых и плоскостей в пространстве.
Упражнение 1
Составим уравнение плоскости (в отрезках), отсекающей на осях OX и OY отрезки, соответственно равные 5 и 7, и проходящей через точку M(1, 1, 2). Построим плоскость. Построим нормальный вектор. В координатном пространстве построим черным цветом толщиной два пункта оси x,y и z, на которых в местах пересечений с плоскостью выведем круговые маркеры синего цвета и обозначим координаты точек пересечения плоскости с осями координат. Выведем обозначение осей и заголовок координатного пространства, в котором напишем уравнение плоскости в отрезках.
A=14; B=10; C=23; D=-70;
x=-10:0.5:10; y=-10:0.5:10;
[X Y]=meshgrid(x,y); %задаем массив для плоскости
Z=(-A*x-B*y-D)/C;
N=[14 10 23];
plot3([0 N(1)],[0 N(2)], [0 N(3)], 'linewidth', 2)
hold on
plot3(X,Y,Z) %Строим плоскость
line([-15 0 0;15 0 0],[ 0 -15 0;0 15 0],[ 0 0 -15;0 0 15], 'LineWidth',2, 'Color', 'black' ) % Строим оси
grid on axis equal
format rational
c=70/23;
plot3(5,0,0,'bo',0,7,0,'bo',0,0,c,'bo','markersize',8) %Строим точки пересечения плоскости с Осями ОХ, ОY и ОZ
title('14x+10y+23z-70=0')
xlabel('x'),ylabel('y'),zlabel('z')
plot3(1,1,2,'blacko','linewidth',4) %Строим точку М(1,1,2)
text(5,5,5,'M(1,1,2)')
Упражнение 2
Задача. Найдем с помощью МАТЛАБ угол Phi между плоскостями x-y+1=0 и y-z+1=0. (Угол между плоскостями - это угол между их нормальными векторами. Ответ.cos⁡〖(Phi)=1/2〗 ). Построим линию, являющуюся пересечением двух плоскостей, заданных общими уравнениями.(То есть построим обе плоскости). Построим нормальные векторы к плоскостям из точки М принадлежащей обеим плоскостям. Найдем направляющий вектор прямой, построим его из начала координат и из точки М. Составим каноническое уравнение прямой и выведем его в названии к графику. syms x y x1 y1 x2 y2
x=-8:0.1:8;
z=-10:0.1:10;
[x,z]=meshgrid (x,z); y=x+1;
plot3(x,y,z,'MarkerSize', 8) %строим первую плоскость
grid on
box on
xlabel('x'), ylabel('y'), zlabel('z')
hold on
y1=z-1;
plot3(x,y1,z,'MarkerSize', 8) %строим вторую плоскость
surf(x,y1,z)
shading interp
n1=[1,-1,0];
n2=[0,1,-1]; %находим нормальные вектора
q=cross(n1,n2)
plot3(0,1,2,'or', 'MarkerSize', 8, 'LineWidth',8)
plot3(2,3,4,'or', 'MarkerSize', 8, 'LineWidth',8)
line([-10,0,0;10,0,0],[0,-10,0;0,10,0],[0,0,-20;0,0,10],'Color','black','LineWidth',2)
line([0;2],[1;3],[2,4],'Color','black','LineWidth',3) %строим направляющие вектора для прямой
text(0,1,3,'M1(0;1;2)') %обозначаем вектора
text(2,3,6,'M2(2;342)')
text(2,3,4.5,'q1')
line([0;2],[0;2],[0,2],'Color','k','LineWidth',3)
plot3(2,2,2, '>k', 'LineWidth',3)
title('(x-2)/2=(y-3)/2=(z-4)/2')
cos=abs((n1(1)*n2(1)+n1(2)*n2(2)+n1(3)*n2(3))/(sqrt(abs(n1(1)^2+n1(2)^2+n1(3)^2))*sqrt((abs(n2(1)^2+n2(2)^2+n2(3)^2)))))
line([0;5],[1;-4],[2,2],'Color','blue','LineWidth',2) %строим нормальные вектора плоскостей
plot3(5,-4,2,'>', 'Color', 'blue', 'LineWidth',2)
line([0;0],[1;6],[2,-3],'Color','blue','LineWidth',2)
plot3(0,6,-3, '>', 'Color', 'blue', 'LineWidth',2)
text(0,5,-7, 'n1') %обозначаем вектора
text(5,-3,3, 'n2')
Практикум по линейной алгебре и аналитической геометрии в среде МАТЛАБ.
Модуль 2. Аналитическая геометрия.
Лабораторный практикум 2.2. Плоскость и прямая в пространстве.
Документ
Категория
Разное
Просмотров
81
Размер файла
295 Кб
Теги
модуль
1/--страниц
Пожаловаться на содержимое документа