close

Вход

Забыли?

вход по аккаунту

?

A STUDY OF THE CHANGES IN STRENGTH AND IN CERTAIN CHEMICAL PROPERTIES OF TEXTILE FABRICS DURING AN ACCELERATED AGING TREATMENT

код для вставкиСкачать
DOCTORAL DISSERTATION SERIES
TITLE Shtty Of TheCanges In Sbaxjfh k l
l l C t r l m C k m a l f m e t k e s O f T e x tile
film
D u r in g A n A c m c n U A p g Im h n tn l
authorL sly Him (hipnwi date.m i _
UNIVERSITY.
?l Stile College
ISO
DEGREE JJUA_ _ _ _ _ _ _ _ _ _ _ _ PUBLICATION NO:
a ______
S! UNIVERSITY MICROFILMS
ANN ARBOR
. MICHIGAN
A 0 II IT O W L h D Cr T.I E IT T
The author wishes to express her appreciation to
Pauline Beery Mack Tor her m a n y helpful suggestions and her
guidance during this study.
To William D. Appel for his kindness in lending the
equipment w h i c h he had u sed in his previous work on accelera
ted aging.
To the various individuals who w er e helpful in supply­
ing the necessary fabrics for the study.
To the members of the Textile Chemistry and Chemistry
department who aided in the executing of the study, p a r t ic u­
larly Lilian Linda Arent, whose constant aid and council
throughout this investigation was an unfailing source of in­
spiration •
TABLE OF CONTENTS
I.
II.
General Introduction . . . . . . . . .
A.
Historical Background .......................
1
B.
O b j e c t i v e s ...................................
4
Part I
..................................................
A.
Introduction
B.
Methods of Procedure
6
................................
7
.....................
8
1.
F a b r i c s ...........................
8
2.
Construction of Fabrics
8
3.
Method of A r m i n g .................... 11
4.
Breaking Strength T e s t .............. 15
5.
Bursting Strength T e s t .............. 16
.
Determination of p H ................ 16
6
.........
Water-soluble Nitrogen ...........
17
.
Weighting Determinations
.........
20
9.
Viscosity Determinations
. . . . .
22
7.
8
III.
1
C.
Presentation of D a t a .......................... 23
D.
Hey to Figures 10 to 3 2 ........................ 6 6
E.
Discussion of Findings
F.
S u m m a r y ......................................... 112
Part II
................................................. 114
. . . . .
......................82
A.
Introduction
115
B.
Methods of Procedure
C.
Presentation of D a t a ......................... 119
....................... 116
TABLE OF CONTENTS
(Continued)
D.
Key to Figures 48 to 5 6 .......................154
E.
D i s c u s s i o n ................................... 164
P.
S u m m a r y ........................................ 176
TABLES
Part I •
Table I .
Part
Part
A. Fiber Content and Construction of Fabrics
in Part I of the s t u d y ...................
25
...................
28
B. Continuation of Part A
Table II.
Part
A. Breaking Strengths of Fabrics Before
and After A g i n g .........................
Part
31
B. Percentage Loss in Breaking S trength
After A g i n g ..............................
41
Table III.
Part
A. Bursting Strength of Fabrics Before and
After A g i n g .............................
Part
42
B. Percentage Loss in Bursting S t r e ng th
After A g i n g ......................
44
Table IV.
Part
A. The Initial and Final pH Values in the
Respective Fabrics
Part
..............
. . . .
46
B. Changes in pH Values in the Respective
F a b r i c s ...................................
47
Table V.
Part
A. The Percentage of Water-soluble Nitrogen
Extracted From the Silk Fabrics Before
and After A g i n g .........................
48
Part B.
Changes
the Percentage of Water-soluble
Nitrogen s u b t r a c t e d From the Silk Fabrics
Before a n r 3
After A g i n g .................
49
Table VI.
Part A.
Fluidity c=» f Cuprammonium-Cellulose Solu­
tion Befoxr*»e and After Aging Treatments
Part B.
•
50
Aging Trea _ t m e n t s ........................
50
Change in
fluidity of Cuprammonium-
Cellulose
Solution Before and After
Table VII.
Number of Hours of
-Accelerated Aging on Pure Dye
Silk Fabri- cs Comparable to Specified
Period of
N a t u r a l Aging (Dry Bursting
Strength)
...............................
93
Table VIII.
Number of Hours of
-Accelerated Aging on Pure Dye
Silk F a b r i o s
Period of
Comparable to Specified
IPIatural Aging (Wet Bursting
Strength)
95
Table IX.
Number of Hours of
-Accelerated Aging on Weighted
Silk Fabri. c s
Period of
Comparable to Specified
XiJatural Aging (Dry Bursting
Strength)
Table X.
Number of Hours of A c c e l e r a t e d Aging on Weighted
97
Silk Fabrics Comparable to Specified
Period of Natural Aging
Strength.)
(Wet Bursting
................................ 99
Table XI.
Number of Hours of Accelerated Aging on Rayon F ab ­
rics Comparable to Specified Period of
Natural Aging (Dry Bursting Strength)
•
101
Table XII.
Number of Hours of Accelerated Aging on Rayon F a b ­
rics Comparable to Specified Period of
Natural Aging
(Wet Bursting Strength)
•
102
Table XIII.
Percentage of Paired Cases in Which Tests of All
Fabrics Show General Similarity
. . . .
108
Part II.
Table XIV.
Part A.
Fiber Content and Construction of Fabrics
in Part IT of the s t u d y ...................121
Part B.
Continuation of Part A ..................... 122
Table XV.
Part A.
Breaking Strength of Fabrics
Before and
After A g i n g ................................ 123
Part B.
Percentage Loss in Breaking strength
After Aging
............................ 129
Table XVI.
Part A.
Bursting Strength of Fabrics
Before and
After Aging
Part B.
- ...........................
130
Percentage Loss in Bursting Strength.
After Aging
. ...........................
132
T a b l e XVII.
Part A.
The Initial and Pinal pH Values in the
Respective F a b r i c s ......................
Part 3.
134
Change s in pH Values in the Respective
Fabric s
..................................
135
T a b l e XVITI.
Part A.
The Percentage of Water-soluble Nitro­
gen Extracted From the Silk Fabrics
Before
Part 3.
and After A g ; i n g ..................
136
Change s in Percentage of Water-soluble
N itrogen Extracted. From the Silk Fab­
rics Before and After A g i n g ...........
137
T a b l e XIX.
Part A.
Fluidi ty of Cupran;noniurn-Oellulose Solu­
tion o f Rayon Fabrics Before and After
Part B.
A r ing
....................................
Change
in Fluidity of Cupranraoniun-
133
Cellulose Solution of Rayon Fabrics B e ­
fore a n d After A r ; i n g ..........
• .
133
T a b l e XX.
Number of Hours
of Accelerated Aging on Fabrics
Comparable Y/Ith Specified Period of
Natural A g i n g ........... ...............
168
Table XXI.
Percentage of Paired Cases in Which Tests of All
Fabrics Show G-enera.1 Similarity
. . . .
172
FIGURES
Part I •
Figure
1. Apparatus Used for Accelerated Aging
Figure
2. Spectropliotograph of Glass Used in.
Window of Accelerated Aging Apparatus
Figure
. .
.
4. Percentage Loss in Breaking Strength
5. Percentage Loss in Breaking Strength,
Rayon F a b r i c s ................ .
Figure
6
8
Silk Fabrics
. . . . . . . .
Silk Fabrics
. . . . . . . .
Silk Fabrics
. . . . . . . .
Silk Fabrics
. . . . . . . .
55
56
57
58
11. Percentage Loss in Wet Bursting Strength
of Rayon F a b r i c s ....................
Figure
54
10. Percentage Loss In Dry Bursting S t r e n g t h
of Rayon F a b r i c s ....................
Figure
53
9. Percentage Loss In Wet Bursting Strength.
of Weighted
Figure
..
. Percentage Loss in Dry Bursting s t r e n gt h
of Weighted
Figure
of
7. Percentage Loss in Wet Bursting S t r e n g t h
of Pure Dye
Figure
. .
52
. Percentage Loss in Dry Bursting S t r e n g t h
of Pure Dye
Figure
.
53-
of
Weighted Silk F a b r i c s ....................
Figure
13
3. Percentage Loss in Breaking Strength, of
Pure Dye Silk F a b r i c s ....................
Figure
.
12
59
12. Change in pH Values of Pure Dye Silk
F a b r i c s ...............................
60
Figure
13. Change in pH Values
of Weighted Silk
................
Fabrics
Figure
14. Change in pH Values
of Rayon Fabrics
. .
Figure
15. Change in the Percentage of Water-soluble
SI
S2
Nitrogen E x t r a c t e d from Pure Dye Silk
F a b r i c s ....................................
Figure
S3
15. Change in the Percentage of Water-soluble
Nitrogen E x t r a c t e d from Weighted Silk
F a b r i c s ....................................
Figure
17. Change in Fl ui d it y of CuprammoniumCellulose Solution of Rayon Fabrics
Figure
64
...
65
IS. Adjacent graphs for all Tests on Fabrics
Number 1 and 2
67
Figure 19. Adjacent graphs f or all Tests on Fabrics
Number 4 and 5 D ...........................
6 £3
Figure 20. Adjacent graphs f o r all Tests on Fabrics
Number 7A and 9D
....................
69
Figure 21. Adjacent graphs for all Tests on Fabrics
Number 11D and 3
70
Figure 22. Adjacent graphs f or
Number 8 DB and 8 D
S
all Tests on Fabrics
......................
13.
Figure 23. Adjacent graphs f o r all Tests on Fabrics
Number 29 and 30
72
Figure 24. Adjacent graphs f o r all Tests on Fabrics
Number 31 and 32
73
Figure 25. Adjacent graphs f o r all Tests on Fabrics
Number 33 and 34
74
Figure 26- Adjacent graphs for all Tests on Fabrics
Number 35
and
36
.
,
.
75
Figure 27. Adjacent graphs for all Tests on Fabrics
Number 38
and
3 9 .....................
76
Figure 28- Adjacent graphs for all Tests on Fabrics
Number 15
and
Figure 29. Adjacent graphs
1 6 D ......................
77
for all Tests on Fabrics
Number 17 and 1 8 ...................
78
Figure 30. Adjacent graphs for all Tests on Fabrics
Number 20 and 2 2 ....................
79
Figure 31. Adjacent graphs for all Tests on Fabrics
Number 23D and 2 4 D .................
80
Figure 32. Adjacent graphs for all Tests on Fabric
Number 2 6 D ..........................
81
Part II.
Figure 33. Percentage Loss in Breaking Strength of
Pure Dye Silk and Nylon Fabrics
. . . . .
139
Figure 34. Percentage Loss In Breaking Strength of
Weighted Silk F a b r i c s ..................140
Figure 35. Percentage Loss in Breaking Strength of
Rayon F a b r i c s ...........................141
Figure 36. Percentage Loss In Dry Bursting Strength
of Pure Dye Silk and Nylon Fabrics
. .
. 142
Figure 37. Percentage Loss in Wet Bursting Strength
of Pure Dye Silk and Nylon Fabrics
. .
. 143
Figure 38* Percentage Loss in Dry Bursting Strength
of Weighted Silk Fabrics
.
144
Figure 39, Percentage Loss in V/et Bur*3 ting Strength
of Weighted Silk F a b r i c s ...............
145
Figure 40* Percentage Loss in Dry Bur*sting Strength
of Rayon Fabrics
.................... 146
Figure 41* Percentage Loss in Wet Bursting Strength
of Rayon F a b r i c s ........................... 147
Figure 42* Change in pH Values of Pure Dye Silk and
Nylon F a b r i c s ............................... 148
Figure 45* Change in pH Values of Weighted Silk
F a b r i c s ............................
149
Figure 44.
Change in pH Values of Rayon Fabrics
Figure 45.
Change in the Percentage of V/ater-
. • 150
soluble Nitrogen Extracted from Pure Dye
Silk and Nylon F a b r i c s .................... 151
Figure 46. Change in the Percentage of Watersoluble Nitrogen Extracted from ’Weighted
’
.
Figure 47.
O-.-Lx'- i
dOTiCS
.
. •
•
•
a
• . .
•
.
.
152
#
•
.
. • 153
Change in Fluidity of CupraiamoniumCellulose Solution of Rayon Fabrics
Figure 48. Adjacent graphs
Number K
aridL
for all Tests on Fabrics
..............................155
Figure 49. Adjacent graphs for all Tests on Fabrics
Number F
Figure 50. Adjacent
Number G
and N
...........
156
graphs for all Tests on Fabrics
and l i ...........
157
Figure
51_« Adjacent gra.phs for all
Iluutiloer A and. B
Figure
Figure
D
158
Tests on Fabrics
.
53. Adjacent gra/phs for all
Fmmloeir E
Figure
..........................
52. Adjacent g r a ph s for all
Humber C a n d
Tests on Fabrics
159
Tests on Fabric
•
160
54=, Percentage L o s s in Bursting Strength of
Cotton S h i r t i n g F a b r i c s .....................161
Figure
55>.Chiange in p H
Values of Cotton Shirting
Fa-brics . .
Figure
5 S .Adjacent g r a p h s for all
162
Tests on Fabrics
llmiitoex' SA a n d S 3 ........................
163
Tlie importance of develop I n c a comparatively rapid s t a n ­
dard method for determining the
degree of deterioration
which, may be expected of a t e x t i l e fabric during use or
storage has become increasingly
evident as progressively
more interest is shown in the paroper description of u l t i m a t e
consumer goods at the time of pmrchase.
Although many t e x ­
tile fabrics appear to be sati sjfTactory at the time of m anu­
facture or of sale, it is i m p o r t a n t
to 3mow whether or not
these sane fabrics will be s a t i s f a c t o r y after certain p eriods
of use.
Even when the o r d i n a r i l y accepted laboratory tests
are applied to a fabric,
the me s uits indicate chiefly the
condition of the fabric at the -tine of testing, and they do
not predict with complete s a t i s f a c t i o n how it will w i t h s t a n d
the various agencies which w iil
combine in determining its
durability while it is u n d e r g o i n g wear or storage.
The study described in t h i s dissertation was u n d e r t a k e n
in order to make a contribution
toward the development o f a n
accelerated aging test w h ich v/ill make it possible to p r e d i c t
in a relatively brief time h o w cx textile fabric will perform,
after certain periods of wear
o n storage.
H i s t orical Background
I.Iany studies have been r e p o r t e d in which the effects o f
aging on textile fabrics have
b e e n investigated by exposing
2
them to outdoor or indoor daylight -under ordinary atmospheric
conditions.
In 1935, Appel and. I es saj
Bureau of Standards
) of tine National
(3
first reported a study
directed toward
the development of a standardized a c c e l e r a t e d aging test
using an artificial light source under
of temperature and humidity,
controlled conditions
and comparing
breaking strength of sill: fabrics with
the changes in
those
obtained in
similar fabrics exposed to daylight through, window glass Tor
relatively long periods of time.
Cook (5
), in 1932, as one part
of* a master *s thesis
reported studies on the effects of a carbon arc lamp, a m e r ­
cury arc lamp, a daylight
(S— 1) lamp,
a neon
daylight on the strength and pH values
weighted silk; fabrics,
lamp, and indoor
of* weighted and u n ­
as a contribution
toward the develop­
ment or an accelerated aging test f*or terctlle fabrics.
Reimel
(13), in 1931, reported
on the Increase
soluble nitrogen which could be e x t r a c t e d from
ing exposure of the fabrics to
light sources.
Yoder
cl 11c follow­
sunlight a n d to artificial
(17), In 1933,
reported on the effects
of combinations of perspiration a n d L i g h t upon
pH value, and v/ator — soluble nitrogen
v/eighted silk fabrics.
in water-
the strength,
in t i n weighted and u n —
Kessinger (ll ), In
1934,
repeated
the work of Yoder using lead v/eighted silk.; an d Hawkins
in 1932 and Ankeney
( 2)
in 1934
studied
(10 )
tine effect of
isolated regions of the spectrum on the str*ength and watersoluble nitrogen of certain weighted
and unweighted silks.
The work oT
these various investigators Indicated that
the deterioration of textile fabrics,
particularly silk,
could be speeded up by the use of artificial light sources,
and that a standard test method could be developed which
would be practical from the point of* view of time,
and which
would simulate aging under actual conditions of use.
In selecting criteria for judging ~th.«s degree oT textile
breakdown resulting from the accelerated sflng
tests which
were applied, t h e work of many xoreviouc investigators served
as precedents.
Roberts and Mack (14), Cook
( 5 ), Hawkins
(Lio)» Yoder (17) , Kessinger (11), Ankeney ( 2 ), a nd Appel,
and Jessup
(3 ) have reported losses in tie bresalcing strength
of textile fabrics as a result of aging-
Sour sting strength
losses have likewise been found in various of those studies.
heirnel ( 13) » Cook ( 5 ), Yoder (17), sand Harris and
Jessup
( 9 ) have
found definite changes in the pH values of
fabrics after aging In the light.
Yoder
( 17),
Hawkins ( IO), Ankeney
) , and Harris ( 8 )
found an increase in the amount of water«co luble nitrogen
v/hich could be extracted from protein fabrics following
aging; and Clibbens and Geake
( 4 ), lease
(12 ), a nd
Stubble bine ( 15) have found that an decrease i n the viscos­
ity of cupr ammonium solutions of celluxlosa accompanies
deterioration of cellulose during agin£»
the
4
n j».'•C i■_i_*'jz
TLo puvpos o ai' t.Iic prnn--nt a t a<ly war, to develop an
• ■<:
.1
>' nf
t'^ t
1
v 1 n : 1. i.;:- I, ,
Icn
no
••—1 tInna ot flnvli'
4/
_»<^ u1, on textlj <■ r u b r t ’s and
1 vav I n
o
rela.t.1v e l y
da to rL omaloion
•nir.h't b e
a •; p “r» io d a
Pu>-n
of
.:y ,-•
'ex.
zz'- , ■y l o i i ,
1i
r r v.l
.
, v/*-, *_ '■+ ■o!
^
ar.d
a
nv:o:^ «,
"t f rc!..’■■*
m o c la l
' ’•w.vii "
!
••—.■ nr,I in
•f
c-;■» «
V
d litn
.'i,‘
of
of
tiae
o
s i n . u l ' * t.»--
:h*. ch. woiiid
v/hs • d e ^ r o e
f a b r ‘c
of*
i .den r e a s o n a b l y
use •
a pan. c o r p o r a
a nd
1.1 Vo
e x p ctfd
sill.-,
r. - n o
ao
•? o t 1*. *:
I o n ’<’■ •*'•!, p . ; 1 v*-- '.vn 1.
ci’
-'ao " 1* t.'
<11 r.I • t -
a lion t p-.-niod
v/oul/l
1
' a
r*o -zve s ' - n t a t I v e
f*n’- -1 r
r.lllr
,v -*k
wone
or I.;..La t*J i.
to
d
11.I t
i
r
In
v ;,n
;.t'i
v< ■r-, rill 1.
:• *_
lUivrr In noi.oi’al •
ui.oc on
I"- r
n ' l e c i '" ■ l ' c -
o.’ f a b r ‘.c don
re l^ M voly
at
,n a n
?np--. •;.t a':lv<
~
5
fabrics chosen for the study the following tests v/ere ias©d:
breaking strength change, bursting strength change,
pH
change, change in the amount of water- soluble nitrogen
(in
silks), and change in the viscosity of cnpranmonitm s o l u t i o n s
(in. cellulose fabrics).
The study was carried out in two parts, as follows:
in
Part I, 29 fabrics were used in an introductory manner f or a
few lengths of aging time; in Part II, 13 fabrics were
studied more exhaustively, for a greater number of periods
of aging time.
In both parts of the study,
laboratory aging were compared with those
the results o f
obtained T h e n t h e
fabrics were exposed for a period of several months in i n d o o r
daylight through glass.
G
P A R T
AN
I
E X P L O R A T O R Y
T H E
C H A N G E S
A IT D
IN
S T U D Y
IN
S T R E N G T H
C E R T A I IT
P R O P E R T I E S
F A B R I C S
C IT E M I G A L
O F
T E X T I L E
D U R I N G
A C C E L E R A T E D
T R E A T
O P
A N
A G I N G
IT E IT T
7
I I T T R O D U C
r I O H
As an exploratory part or t h i s study, 29 fabrics were
studied Tor several periods of a g i n g
time each., in order to
compare the losses in strength, arud certain changes in
chemical properties w ith those o b t a i n e d as a result of aging
the same fabrics in indoor light f o r
of time.
The fabrics of this part
relatively long periods
of the study were
supplied by V/. D. Appel of the N a t i o n a l Bureau, of Standards,
who in turn had obtained them f r o m Harr y A. Mereness, the
Director of Technical Re search of
of Textiles at that time#
t h e national Federation
8
U 1
T II 0 D S
0 F
P R O C E D U R E
Fabrics
Tiie fabric s usod in Part I of this
study were m a n u f a c ­
tured accordin: to specifications submitted b y those who
supplied then to the author-
Specifications
thread, c o u n t , twists per inch,
yard and were s o ;.nit xen as
weave,
included the
and we±_;ht per square
to assure certain types of pure
dye silk, v/ei dited si lie, and rayon fabrics beinq represented
in the study.
Sin of these
fabrics were pure
dye si lies,
varyiny f r o n o. jeor^ette to a r o u f h crepe ; lb were weiqhted
silk fabrics o f different
types;
and nine were rayons,
some
of the reg e n e r a t e d cellulose and some of the cellulose a c e ­
tate type.
One fair! c was a coiriination of silk and e u p r a m ­
monium rayon.
0 ons truction of Fabrics
'Ac 1,_p-1 p er» square y a r d .
fully cut accordin' to threads
A tw o-inch square v/as c a r e ­
from each fabric,
and the
squares were viei ;hcd in a condiLioninp r o o m w i t h a constant
temperature
of 70 deyrees and a constant relative humidity
of G5 per coat-
The v/ei dits were recorded in prams per
square yard of fauric.
inroad
c oai I•
The. i.rcc.i, c <.•ant of each fabric v/as 'm d e
v/ith a Alfred £u tor o.i so ctin:; cabinet and thread counter
9
number 17670-7.
Five r eadlnrs on one inch were made In the
v/urp direction and five in the fillinp direction oF each.
Fabric •
An average was made For the readings in each
direclion•
heave.
The type of weave used was determined by in­
spection under a BauscVi and Lor.fb widefield binocular nicroscope, number 257,009.
Twlsts ncr inch in the y a r n .
United States 'destiny
Company tv/ist tester, number loo, was used in detormininy
the twists in the yores.
The end of the y a r n to be tested
v/as Frayed From she Fabric For a distance oF about three
inc.ies, and the end v/as firmly placed in the rip.ht hand clamp
of the equipment without reloa/in.; the thread until aFter it
v/as Fastened.
The Fabric was then qcritly Frayed. From the
yarn For a distance about two
be tested.
inches more than the lcnyth to
V.'ith the help of the pick needle,
the left hand
end of the yarn v/as placed in t; c loft band clamp so that
the tension on the yarn held the take-up pointer at zero.
The yarn wavs then untwisted w i t h trie lever placed at
cibher Z or S to permit trie talce-up to move toward the left
dependinj upon
the direction of the twist.
i.bien the take-uo
had swunp to the left as Far as possible the yarn v/as yenwly
stroked with the pick needles
td reads
or
from loft to riqht.
The
ly of ..ho yarn were then separated; anb tie last
Is removed. From the y a r n b y turn in ; the machine by
10
hand.
A ten inch yarn was us e d wherever possible for d e t e r ­
mining the twists in the yarn.
The meth od of determining
twists for the three types of fiber in the study 7m s
same with the exception of weighted silk.
the
V/eighted silk
yarns were slightly moistened before untwisting in order to
loosen the finish so that the thread or p l y would separate
more easi iy.
Filaments per y a r n .
After the yarns had been untwisted,
they were mounted in a mixture of h alf water and half g l y c e r ­
ine on a microscope slide, and the filaments per yarn w e r e
counted under a h i g h power microscope.
D e n i e r , or Y ar n s i z e .
Yarn counts were made on a
Universal Yarn Ilumber Balance, manufactured by Alfred S u te r
(number 134510).
The Legal Denier Count system v/as used,
in
which the weight of a 450 meter skein was given in deniers.
One denier is equal to five centigrams or 20 grams.
A
length of yarn v/as frayed from the fabric, measured, and
cut
exactly 90 centimeters in length according to the steel
ruler supplied with the balance.
skein and weighed.
The yarn was wou nd i nto a
Readings were made directly in deniers
according to the, scale given on the balance.
V/ith silk
fabrics the readings were recorded as probable denier f o r
the ply or thread of the yarn.
Allowances v/ere made for
slight variations in the balance readings.
Weighted s il k
11
fabrics were reported the same a s pure dye silk, however,
deductions were made from the actnaal balance readings in
ord er
used
to allow for the p e r c e n t a g e of weighting and finishing
on the fabric.
Rayon yarn, n u m b e r s were reported for
the r a y o n yarn as a whole rather
than for the ply or thread.
Method of A g i n g
that
The method of aging used in
this study was b a s e d upon
of Appel and Jessup
the national Bureau, of
Standards.
from
The apparatus c o n s i s t e d of glass boxes rebuilt
those formerly used b y these investigators, a n d shown
i n f i g u r e 1.
side
( 53 ) of
The boxes h a d tliree layers of glass o n each
except the front which f a c e d an open door of the Fade-
Gmeter.
A dead air space of abouit one inch thickness between
the layers of glass acted as an insulating agent.
ity w as held constant with water
tion
of sodium chloride;
o f the box.
The h umid­
vapor from a saturated solu­
this sol_ution was kept on the floor
An electric light but.lb covered in tin foil was
u s e d as a source of heat within t h e boxes.
was thermostatically controlled a.t 6 5 - 2
The f r o n t of the box which faced
The temperature
degrees centigrade.
the Fade—Ometer w a s made of
w i n d o w glass one-eighth inch in thickness with a sioectral
transm i ss io n shown in Figure 2.
per cent, was maintained,
A relative h u m i d i t y of 75
and t h e boxes were olaced
15
12
Figure I
Apparatus Used T o t Accelerated Aging
p, o a co
t* co
**! --Cr—i
al
C
C
.POO
O PX!
p p, p u -P
id a! al attH
S > o o &
13
Wave
Lengths
5 Units
2482
2535
►*
*8
c
•rl
2654
2700
2753
2804
2894
2967
3021
)131 — 312 5
3341
3650
3907
4C7S-4047
4358
4916
5461
5769
10
P*
«rl P>
c3
t- t
M
**'
'p
to
•H
(u
03 P .
►' C t,
<
03
03
r~i 1
C tf
rH
O X5
<D
.P -P»
(2,
col 2
a>
l b rH
O CL>
-P c >
O 0
, c ■=G
Pi
0 <P«
u O
-p
0
©
p.
r /j
14
inches
f r o n the I’a d e - O m e t e r
giving an intensity called
the iuroau of Standards invecti:;ators •
one
The conditions
o±*
toi.ncraturo, humidity, and 11 lit hr.tensity described auov c
wore used by the author because it was necessary to have
standard conditions of test,
and. fur*ther because it was
found
by Anyel and Jessup ( 3 ) that these conditions yave a r a p i d
clot eri oration of fnbr Lc g if any do t o r ‘.oration was lihely to
tale place.
Th.es e sane c oricli t ions wore maintained throu.'jii-
oiit rtis entire study boc auce it vas
felt h u t
the netnod
for detcrnininj deterioration should tale as little time as
possible under practical laboratory testin'/, conditions.
The couples of tentile fabric v/cre cut into sizes s u i t ­
able for bread in ; and bur stin.•/ st?en/th tests before spiny •
hi ic s a io fabric specimens us o c in the s tron/th tests wore
preserved in each case for p H and v;atcr-soluble nitroyen or
viscosity tests, dopendir.y upon v/hetncr they were protein or*
cellulose in n-atnre.
The entire /roup of if fabrics of Part 1 was exposed t o
the hade-Oneter for 20 hours ; elplrt of the samples wore n o t
of sufficient size to penult further test in/;.
The renai niruy;
£1 samples were exposed to ole fade-One ter for periods
and 60 hours.
of <1-0
Similar s a:uni c s of e ach of these 21 fabrics
were also exposed to natural ayiuy for 12 and 24 weeks.
wej. uitcd sill: fa.jrJ.cs, one pure bye silk fabric,
Two
one f a b r i c
coraaininj a pure aye sill: warp and cuprauinoniurri rayon f i l l —
15
ing, and two fabrics of regenerated rayon arid acetate rayon
combined were of sufficient size to permit a 100 hour test
to be applied, and this was done in these cases.
The n a t u r ­
ally aged samples were hung in the south and east window's of
a roof observatory located in a town of about 15,000 inhabi­
tants,
situated five miles from the coast of Rhode Island.
The samples were liun,-; in the south and east exposure rather
than In the north exposure,
as was used by Appel and Jessup
(3 ), in order to obtain the greatest amount of a ln.g p o ssi­
ble from natural sources under
the c ondi Lions of tine test,
hacl-i week burin.; the test period the samples were alternated
from a south to an cast e x p o s u r e , raid vica versa,so that by
the end of t ]lc experimental period, all. sample c had occupied
..,nch exposure position In the o bid owe •
After the s a p i e s
mad been aped they were then suoject-
ed to several tests to determine the amount of deterioration
w'.li ch ii.ad c c c ur red.
■BIreaking;
— — ■■. W
After aging,
tests,
Strength
Test
--- /~>.
the samples were subjected to various
including: the breaking strength test.
The standard
Strip Method of the A m erican Society for Testing Materials
(1 ) was used in determining breaking strength.
of tills method are given in the reference
The details
just cited, and
also in the bureau of Standards bulletin on 11,,oven Dress Goods
Testing and Reporting" OS 59-59
(16).
freaking strength
16
tests were made o n l y
ated aging test;
it
on the test pieces used in the acceler­
was not possible to apply this test to
the samples w h i c h w e r e
respectively, b e c a u s e
ed*
aged naturally for 12 and 24 weeks*
the
size of the aged sample was limit­
All breaking strength, tests were made in a constant
temperature-constant humidity room at 70 degrees Fahrenheit,
and 65 per cent, r e l a t i v e
humidity.
posed to these a t m o s p h e r i c
The fabrics were ex­
conditions for at least four
hours before t e s t i n g *
B u r s t i n g Strength Test
All of the s a m p l e s ,
both of the artificially and of the
naturally aged f a b r i c s , w e r e subjected to the bursting
strength test.
120 was used.
A m o t o r - d r i v e n Mullen tester, type number
Five
a dry condition, a n d
bursts we re made when the fabric was in
another five bursts in a wet condition.
All strength tests w e r e made in a standard conditioning room
as in the case of tlue breaking strength determinations.
Detsermlnation of pH Values
Determinations
o f pH values were made on all samples
before and after a g i n g ,
in order to determine the relation­
ship between the a c i d i t y and the alkalinity of the fabric
and its rate of d e t e r i o r a t i o n *
ent electrode p o t e n t i o m e t e r ,
A Leeds and Horthrup perman­
catalogue number 7G60 was used
in making these d e t e n n i n a t i o n s .
The samples were prepared
17
by cutting the fabric very fine.
One g ram of the finely cut
fabric was placed In the cup of the machine and the cup
f i l l e d with carbon dioxide free distilled water.
It was
found necessary to use water within six or eight hours after
it h ad been freed of carbon dioxide in order to obtain satis­
f a c t o r y readings.
The samples were allowed to become
thoroughly wetted out in each case before making the deter­
minations.
A commercial buffer with a pH of seven was used
in standardizing the cells.
Water Soluble Nitrogen
In the case of all silk fabrics, the amount of watersoluble nitrogen which could be extracted from the fabric
befo r e and after aging was determined by a method similar to
t h a t used by Yoder
(17), which in turn
w o r k of Follin and
Wu ( 6 ).
The sample of
was based upon the
fabric to be tested was dried to a con­
stant weight at 10O - 10 degrees Centigrade in an Emerson
conditioning oven.
The sample was then placed in a water-
extracting bath of 100 c.c. of distilled v/ater and boiled for
one hour.
During this time the water level was maintained
a.t Just under 100 c.c.
The silk sample was then removed and
the volume of extract made up to 100 c.c. in a volumetric
flask.
Fifteen c.c. of this extract v/as taken and again di­
l u t e d to 100 c.c. with distilled water.
Five c.c. of this
18
dilute silk extract was placed in a h ard glass digestion
tube w h ich had b e e n thoroughly cleaned w i t h
dichromate
cleaning solution and dried by rinsing in alcohol, graduated
at the 35 c.c* and 50 c.c* level*
To the extract in this tube, one c*c. o f dilute acid
mixture was added.
(The dilute acid m i x t u r e was made by com­
bining the regular acid mixture with an equal volume of
water.
The reg u l a r acid mixture was made a s follows:
to 50
c.c. of a five per cent, copper sulfate solution, 300 c.c*
of 85 per cent* phosphoric acid was added a n d mixed.
hundred c.c. o f concentrated sulfuric acid,
ammonia, was added and mixed. )
One
free from
Two hard glass beads were
added to the tube to prevent bumping and th© mixture was
brought to a boil and boiled vigorously over a micro-flame
until the characteristic dense fumes began to fill the tube.
Care was taken to agitate carefully to prevent spouting.
The flame was then lowered, the tube c o v e r e d with a small
glass beaker and the boiling continued for about two minutes,
or until the solution was colorless.
The wtiole digestion
operation took about seven to eight minutes*
The solution
was then cooled about a minute and a half a n d 15 to 25 c.c.
of distilled water added.
The solution was not allowed to
cool too long before diluting, because the concentrated acid
attacked the glass.
'nVhen the solution had cooled to room
temperature, it w a s diluted with distilled water to the 35
19
c.c. mark.
If the solution was turblcl it was centrifuged be ­
fore diluting to this mark.
The sample was then Nesslerized
according to the method of Follin and Vfu ( 6 ) •
A blank tube was pr epared for use as a standard in m a k ­
ing the colorimeter readings.
To one c.c. of dilute acid
mixture distilled water was added up to the 35 c.c* mark*
The blank was then made up to the 50 c.c* m a r k v/ith N e s s l e r ’s
solution similar to that used with the unknown sample*
The unknown sample and the blank were Nesslerized at
the same time.
The colorimetric measurements were made w ith
an Evelyn Colorimeter No. 7309 using a Rubicon Galvanometer
No. 7510.
The macro-method was used in this case.
The
contents of each digestion tube were then transferred immedi­
ately to a colorimeter tube and read v/ith a 520 filter.
The
blank was placed in the machine first in order to standardize
the zero point*
The zero point was checked from time to time
with a blank*
The calculation for the miligrams of n on-protein n i tro­
gen were made according to a variation of the formula given
for the Follin and V/u m e t h o d (7 ) •
The formula, as given by
these investigators, was as follows:
X
= 1O0L
X
m
L
m 2x log of the galvanometer reading
Ivlg.
of non-protein if/lOO c.c*
Kg = Constant 0.35 ± 0.05
20
This formula allows for the dilution of the o r i g i n a l ex­
tract mixture 1:10*
luted 15
Since the extract in this case was di­
: 100 the formula was corrected to read:
X s 10L x 100
Kg
or
X = 10L x 6.67
“15
Kg
Determinations were made of the per cent, of non-fibrous
material in each sample, and the amount of nitrogen calculated
in terms of water-soluble nitrogen per g r a m of fibroin.
Weighting Determinations
The method of procedure for determining the amount of
material other than silk fibroin in the silk fabrics,
common­
ly called weighting was a modification of the method of the
Bureau of Standards as follows:
E ach sample was weighed to
a constant weight at 100 - 10 degrees Centigrade in an
Emerson conditioning oven.
This weight vras called Weight A.
The sample was then digested in 80 to 90 times its weight of
distilled water at a temperature of 65 to 70 degrees Centi­
grade for 20 minutes with occasional agitation.
The liquid
was drained off and the digestion repeated and the sample
dried.
A second weight was not taken at this point, as is
usually done, because the author was not interested in watersoluble finishing materials,
but in total weighting.
The sample was then soaked in ethyl alcohol at room
temperature for about three minutes,
squeezed by hand and
21
similarly soaked in diethyl ether Tor* three minutes*
The
sample was air dried and then dipped into boiling water, re ­
moved,
and squeezed b y hand.
It was next d i gested In pyrex
beakers with 80 to 90 times its weight of dilute acid co n ­
taining two per cent, by weight ol hydrochloric acid and two
per cent, by weight of hydrofloric acid.
The acid mixture
was kept stored in a wa_x— lined bottle w h e n not in use.
sample was digested for 2 0 minutes
The
at 55 to 60 degrees centi­
grade, rinsed, and squeezed b y hand.
This treatment was
followed by a similar digestion in a solution of two per
cent* anhydrous sodi u m carbonate in. water.
again rinsed in distilled, water
squeezed b y h and and given
another digestion w i t h the acid reagent.
digestion, the sample was well rinsed,
water, then w ith ethyl alcohol,
The sample was
Aft e r this final
first w i t h distilled
and then w i t h diethyl ether*
It was air dried, and t h e n dipped into boiling water.
It
was finally dried to a constant weight at 100 - 10 degrees
Centigrade in an Emerson
conditioning oven.
This weight was
called Weight C.
The sample was t hen placed in a weighed porcelain cruci­
ble and slowly ashed in a. muffle furnace until all carbon­
aceous matter was removed.
The weight of the remaining ash
was called Weight D.
From these weights the total percentage of rion-fibrous
material present In the sample was calculated according to
22
tiie following formula:
Percentage total weighting - (A-C^ •» D
x
100
Viscosity Determinations
The apparatus designed and built by Stubbl e b i n e
(15),
working in the same laboratory with the a u t h o r , was used to
determine changes in viscosity of cupramrnon.ium solutions of
cellulose fabrics.
The method used by St u b b l e b i n e followed
closely that of Clibbens and Geake
( 4 ), a l t h o u g h numerous
modifications were made for the purpose of
increasing the
capacity of the chamber used in preparing the cuprammonium
solution and for providing more rapid and efficient stirring
when preparing a comparatively large v o l u m e
of solution.
The viscometer tubes used by Stubblebine w e r e smaller than
those used by previous investigators.
Viscosity values were calculated f rom
the results of a
determination according to the following formula:
m
p
(AT - B/T)
7! x Viscosity in poises
jo m Density, grams per c.c.
T A and B
Time of flow of a given v o l u m e
- Constants
The viscosity in poises was then t r a n s p o s e d into
fluidity in rhes.
n
- l/p
F ■ Fluidity
in Rhes.
23
P R E S E N T A T I O N
0 F
D A T A
The fiber content and construction of each, of the 29
fabrics used in this part of the study are given in Table I,
Parts A and 3, pages
T5 to
30.
The breaking strengths of the fabrics, before and after
application of the different aging treatments,
and the p e r ­
centage losses in strength resulting from the treatments are
given in Table II, Parts A and B, pages 31
The bursting strengths of the fabrics,
the specified aging treatments,
A, pages 42
to
before and after
are given in Table III, Part
to 43 ; and the percentage losses
strength in Table III,
41.
Part B, pages
44 to
in bursting
45.
The initial and final pH values, found for the fabrics
on the respective aging treatments are given In Table IV,
Part A, page
4G; and the changes in pH are given in Table
IV, Part 3, page
47.
The data on the percentage of water-soluble nitrogen
extracted from the silks, before and after the different
aging treatments, are given in Table V, Part A, page
48;
and the percentage changes in water-soluble nitrogen'in
Table V, Part B, page
49 •
The data on viscosity,
or fluidity,
in cupranraonium
sohatlons of cellulose fabrics are given in Table VI, Part A,
page
50; and the changes in viscosity are shorn in Table VI,
24
Part B, pace
50-
Tiio data cited above as shown in Tables II to VI, in­
clusive, lave been graphed in Figures 5 to 52, pages
51*" •
51 to
TABLE I-a
FIBER CONTEFT AIR) COFSTRFCTIOF OF FABRICS IF PART I OF THE STUDY
Fabric
Dumber
Type
Fiber
Weight per
square yard
in ounces
'TPtread
Ccunt
7/arp
Filling
" " "
Weave
Percentage
non-fibrous
material
1
Pure Dye Silk
2.21
Plain .
183
90
2
Pure Dye Silk
2.61
208
83
4
Pure Dye Silk
2 .9 b
Plain
Satin
S shaft
440
111
10.64
5D
Pure Dye Silk
1 .2 7
Plain
135
87
6.51
7A
Pure Dye Silk
1.66
Plain
192
118
12.00
9D
1 .8 5
S atin
5 shaft
265
102
14.73
SDB
Pure Dye Silk
Warp - Pure Dye
Silk; Filling Cuprammonium
Rayon
Weighted Silk
Tin
Weighted Silk
Tin
8DS
S.24
1 0 .5 7
225
98
4.20
2.93
Satin
5 shaft
Satin
5 shaft
272
84
60.37
2.65
Plain
176
92
52.69 '
Weighted Silk
2.32
Plain
Satin
176
87
49.74
29
W eig h ted
S ilk
2 .3 4
5
360
75
30
W eig h ted
Silk
3 .5 5
Satin
5 shaft
360
97
11D
r-t
0
2.32
shaft
5 9 .0 2
65.72
TABLE I (Continued)-A
Fabric
Number
Type
Fiber
Weight per
square yard
m ounces
31
Weighted Silk
4.49
32
Weighted Silk
3.76
Weave
Satin
8 shaft
Satin
Variation
a
33
Weighted Silk
3.19
34
Weighted Silk
35
Thread
Count
Warp
Filling
Percentage
non-fibrous
material
368
92
66.15
480
114
58.04
Plain
192
71
56.98 .
2.48
Plain
168
69
57.58
Weighted Silk
3.60
Plain
176
71
65.18
36
Weighted Silk
2.15
Plain
152
74
55.26
38
Weighted Silk
2.80
Plain
176
97
46.32
39
W eig h ted
2.13
Plain
176
93
46.33
4.17
Plain
123
54
S ilk
Viscose and
15
Acetate
V isco se
and
16D
Acetate
3.76
Plain
158
74
*;{■
17
Viscose
3.64
112
68
#
18
V isco se
4.03
Twill
Satin
5 shaft
225
65
20
Viscose
2.97
Plain
101
71
TABLE I (Continued) -A
Tf? * ^
Fabric
Humber
Type
Fiber
V.eignt per
square yard
in ounces
----- '
Weave
’
Count
Warp
Filling
22
Acetate
2.39
Plain
200
66
23D
Acetate
3.06
184
62
24D
Acetate
4.97
Plain
Satin
8 shaft
328
97
26D
Viscose and
Acetate
6.04
Plain
46
42
Viscose and
Percentage
non-fibrous
material
M
*
If
crayon fabrics are not usually nlneral v/cii'Iited; therefore, this test was not performed
p for rayon fabrics.
A 3atin variation. as diagram
TABLE I (Continued)-B
FIBER CONTENT AND CONSTRUCTION OF FABRICS IN PART I OF THE STUDY
fabric
dumber
1
2
4
5D
Average Tvdsts per
yarn per inch
Filling
Warp
-TsV&T.'T 11
X
2z-S5.7
83-60.9
A
8Z-64.1
2S-61.2
X
2Z-64.0
2s-7l*l
2s-76.6
2Z-70.3
2Z-71.0
Vhreads per
yarn
Warp
Filling
filaments
per yarn
Filling
Warj)
Denier
Warp
Filling
3
3
35
37
13/15
13/15
2
5
24
77
. 13/15
20/22
2
3
23
43
13/15
20/22
2
2
29
27
20/22
20/22
2
2
13
26
13/15
20/22
2
2
25
26
15/17
20/22
2
1
23
65
13/15
1
2
14
26
13/15
13/15
2
2
25
23
13/15
13/15
2
2
23
24
13/15
20/22
1
2
12
24
13/15
13/15
1
2
12
24
13/15
20/22
2s - 67.4
7A
X
9D
X
11D
X
3
X
8DB
X
8DS
X
29
X
2z-69.0
2s-6&.6
2Z-62.7
s- 4.0
2s-58.8
2z-69.2
£ s -42.6
2Z-45.7
s-42.2
2s-70.0
22-72,3
97
I s -7 1 . <5
30
X
2Z-65.1
to
03
TABLE I (Continued)-3
Fabric
Jlumbep
51
Average Twists per
yarn per inch
IVarp
Filling
X
Za-VS'JS 1
2Z-72.9
Threads per
yarn
fr&rp | Pi 11ins
____________
Filaments
per yarn
IVarp
Pilling
Denier
V/arp
Pilling
2
12
24
16/18
20/22
1
2
12
24
16/18
20/22
o
Ut
4
23
37
16/18
13/15
2
2
24
24
. 16/18 ._
2
2
23
28
20/22
16/18
2
2
23
23
16/18
13/15
2
2
25
24
13/15
13/15
16/18
144
173
1.
!
i
52
35
54
35
56
58
39
15
1
2s-65.6
2Z-70.0
X
§8-71.3
X
2Z-71.7
2s-b5.4
V
2Z-64.6
2s-77.5
2z-76.5
X
2s-36.5
X
2Z-42.2
r 2s-44.6
2Z-47.1
X
f 28-47,9
2Z-46.6
X
2S-50.0
s- 5.1
2z-4S.2
2
2
25
29
n
X
1
32.6
39.2
1
1
34.2
41.6
.
.
. .
15/18
16/18
16D
s- 4.5
2s-54.4
2z-56.2
17
s-26.2
s- 2.7
•y
X
1
59.S
40
146
133
18
s-36.8
S-5C.2
1
1
39.2
40
98
102
20
s-41.2
s-43.4
1
1
55
77
109
158
97.3
112.6
N
<o
TAnLE I (Continued)-B
Fabric
Dumber
Average Twists per
yarn per inch
Filling
Y.'arp
oo
s-42.2
23D
s- 4.7
Threads per
yarn
7/arp
Filling
Filaments
per yarn
.. V/arp_ . Filling
Denier
\7arp
Filling
s- 2.6
1
1
20
40
67
118
s- 3.1
1
1
20
39
72
150
1
1
20
40
74
113
4
4
655
395
2S-58.4
1"*~
•
26P
o
1
CO
24D
51.2c
1
*•" •
2z-58.2
47.5c
*■—
Only natural twist present.
*-— - • ■■ ■■
140
190
■■■■• .-i...
i— —
■— - ■
..... .
Three to five turns per inch.
This figure represents an average of a complex yarn.
Caveraced as follows;
The yarn is diagramed and
filaments
filaments
filam en ts
filaments
Averace Twist per yarn x (A-K3+C) + (AtB+D) + (A+-E+F) + (A+EtG)
‘i
W
o
31
TABLE II - PART A
BREAKING STRENGTHS OF FABRICS BEFORE AND AFTER AGING
Fabric
lumber
Thread
Count
warp F illing
Bure Dye
Silk
90
183
1
268 "S3"
2
4
446 1 1 1 "
135
87"
5l>
^7k
"'"isir “ITS'"
265
lo 2
9b"
1U n ­
225
68
weighted
Silk
272
84
3
175
92
8-U-b
3-D-S
175
&7"“
76
$66
" 2T " .
30
360
97
31
~ 35B"
92
35"
486 114
7i
192
33
64
168
69
3‘B
71
178
36
' 135”
74
38
176
w r '
176
36
56
Say on
15
123
54
158
16b
"74
“ 17
115
68
18
255'
65
20
71
161
22
2 oo
Sg
23-D
164
62
24 -b
' 655'
97
26-D
46
42
Dry breaking Strength. Before Aging
Filling
B
V/arp
A
Sum
Pounds
Filling
Pounds
Warp
pounds
per one per one pounds
A*B
inch
per
per
inch
strip
thread thread
strip
73.2
65. 6
loo . 2
68 .6
47.6
75.6
'"54.4
48.0
43.2
5l • 2
49.8
48.8
69.4
65.4
47.8
45.6
4 3 .6
4S.0
43.2
49.8
40.4
rr.rz 0
XjxJ •
73.8
65. 0
42.5
4 l .3
34.8
75.2
3 9.4
35.2
46.4
55 . 5 “
S4T6"
26.5
25 •6
35 •8
15.0
24.6
26.2
12.0
21.4"
17.4
24.2
21.8
15.8
14.4
19.0
27.6
28.8
14.2
26.6
45.2
29.2
37.7
24.3
2"6 .o
31.6
40 • 6
0.79
6.33
"1T."35
0.37
6.4Si
6133
0 •66
0.40
0.39
0.33
6727 '
0.23
6.36
6.29
0.56
0.25
6.23
6753"' 1 6".55"
0.56
0.37
0.18
0 .25
"” '0".55
6.14
0 .14
0.17
0.14
67513 "1r
6 .2 S
0.26
0.30
0.26
0.54
0.18
0.57
0.36
0.13
6.52
"6.12
"
0.21
o.31
6.23
0.26
0.56
0.26
0.31
0.33
0.26
6.53 "
0.28
0.66
0 •63
6.29
0.45
6 .45' " 6.33
0 .2 I
“ 5'.36
0.19
: 0.47
0.21 ] 0.32
0.66
| ”5757 "
0.36
“6755
0.55
0.36
0.33
0.36
0.53
0 .56
6.31
6.43
0.36
“6.54
0 • 63
0.59
"075T
hl .'35
0.74
ro.5“5
"77755
0.3"6
“6 ".'55
' 1.63
32
TABLE II - FAEP A
(Continued)
Dry Breaking Strength After* 20 Hours
Fabric
Number
Thread
Count
Warp Pill­
ing
Warp
Pounds
per one
inch
strip
Accelerated Aging
D
Pilling
C
Filling
Pounds
Warp
per one pounds
pounds
per
inch
per
thread
thread
strip
Sum
C+D
Pure Dye
Silk
79.4
37.2
0.43
0.41
0.84
1
183
90
0.25
51.8
“
4
3.8
'
0775
2
t>.53
268“
83
38.6
0.66
4
111 •3
6.23
6733
446 1 1 1
Si .8
0.25
0.25
6.31
135 “ £7“ ' -' 3575 ''
5b
24 .2
0.21
192 118
4772
6.23
0.46
7a
17.6
0.4l
63.0
0.24
0.17
9D
265 I"o2
trrss
■
'
“225
(1.154
lib*::*
62.6
6.62
33
.2
08
Weighted
Silk
49.6
3
272
17.8
0.18
0.21
0.39
84
173“
■
“ 0724" " 0.48
21.2
0.24
£2
43.6
S-D-B
6.36
0.32
8-b-s ~173~
£7“ ..... 52.4"
27.5
0 •62
2b
0.17
“ 33o
50 .2
0 .14
75
13.0
0 ■31
30
TT.'S ‘'■'o".14 ' 0.26“
336“
07
49.2
6.34
31
335'
Si •S
Y77S" “
o.i7
o.lb
02
0 •36
“32
480 "TY4 '
74.6
“
o.“2S
26.4
o .15
6.3'S
o3
192
71 '
52 •S
0.27
0.26
l8 .e
0 .53
34
165
66
46 .6
14 .8
0.28
0.2:1
'0.49
35
71
45.2'
14 .4
0 .26
0.25
178
“0746
36
152 “ 74“ 1
43.6
18.6
oT26
0.25
0.34
"38
176
97
46.2
25.6
0.25
0.62
0.26
“3b
“ T7S"
93
43.0
0.24
0.28
26.0
0.52
Rayons
15
123
54
40.2
13.2
0.33
0.24
0.57
1“6 -b
158
74
33.4
20.4
6.21
S/SS""
6.49
17
“1 1 1
6S
69.0
43.4
' 6.<34
0.62
-T Y 2 6
18
225
OS
102.0
0.45
25.7
6.46
“6755
2b
“ 161" “71
38.5
35 .5
0.36
0.56
0.83
22
“ 266
68
41.0
23.0
0.2l
0.^35
6YS6
2o -D
184
62
34.2
24.4
o .ib
6 .3 b
'6755
24-D
DV '
328
66.2
27.2
6.21
6.26
“67T9
"26-b
46
42
38.6
"'3TY2'
6.83
0 .29
1772
33
TABLE II - PART A
Fabric
Number
Pure Dye
Silk
i
2
4
5D
7a
§D
11 d -*
V7eighted
Silk
3
8 -D-S
29
30
31
32
“53
34
35
38
39
Rayons
15
“15-D
17
Te
2o
22
23-D
24-D
26-D
Thread
Count
Warp F ill­
ing
90
"“83 '
Til
87
TTs
2 6 5 ■T 6 2 ■
225
§8
183
262
T4o
”T3“5
192
84
272
52"'
170
176 1 s T
360
75
97
360
22
368
114
460
1 S T " 71
66
168
“T75~
71
""152
74
176
67
■T70“
93
54
123
128
“7 T H
112
68
225 '“ "63 '
71
2oo
66
62
l§4
3"2S
67
46
42
(Continued)
Dry Breaking Strength After 40 Hours
Accelerated Aging
Filling
W arp
D
C
Sum
Pounds
Warp
Pounds
Filling
per
one
pounds
pounds
per one
C+D
per
per
inch
inch
thread
thread
strip
strip
69.8
64.2"
109.6
35.0
47.6
68.6
38.0
42.0
38.6
2o.6
23.2"
0.33
0.26
O'.25
0.26
0.26
0.40
6 •6 1
0.34
0.24
o.2o
20.0
0.20
61.6
32.0
0.24
0.27
0.78
0.77
0.59
0.50
0.46
0.44
0.33
6.60
X
42.5
43.0
50.6
40.0
61.0
76.2
4 3 .0
47.0
45 .0
44.5
44.0
41.0
X
2 q .o
X
X
X
X
33.0
70.4
33.5
X
21.6
23.0
11.6
1“5.6
18.6"
22.6
l7.6
14.6
13.0
18.0
28.6"
26.6
X
TO. 6
X
X
X
X
' 26.5“
20.6
32 •5
X
0.24
0.24
0.14
o.ii
0.17
0.16“
0.26
0.28
0.26
0.815’
0.25
0.23
X
0.18
X
X
X
X
0.18
0.21
0.77
X
" 2.23
0.26
0.15
O.lS"
0.20
(5.28
0.24
0.20
(5.18
6.24
0.29
6.28
X
0.26
X
X
X
X
0.43
0.80
""6"."77
X
' 0.47
0.50
0.26
6.26
0.37
0.36
0.46
0.46’
0.44
0.53
6.54
0.-51'
X
0.44
X
X
X
X
■ o.“6I
"o.TT
' T75'4
34
TABLE II - PART A
l)ry
Fabric
Number
Thread
Count
Warp F i l l ­
ing
Pure Dye
Silk
90
1
183
2
268 ' 83
4
"446 111
87
'T
3 '3
5d
1 6 2 "1TB”
7a
■"W "
263
102
66
llD*::'"22TT
(Continued)
A.fter 6 0 Hours
Accelerated Aging
D
Filling
C
Warp
Filling
Pounds
pounds
pounds
Sum
per one
inch,
per
per
C+D
thread thread
strip
B reak in g
Warp
Pounds
per one
incli
strip
7 1 .0
56.5
X
30.2
43.6
57 .6
5 6 .6
S tren g th .
3 6 .8
5 8 .6
X
16.6
24.5
16.0
26.5
0.41
0.46
0.39
0 .2 4
X
X
" 6.15 H "HITS
"7>TS2T ~ ' “6".21
0.82
0.15
0.27
0.83
0 .8 0
0.70
X
6.46
6.43
6.38
0.52
IV eiglitecT
Silk
3
3-D-B
S-D-S
29
30
31
32
“3 8
39
Rayons
T8
T6-D
17
18
23
22
23- d
24-D
28- d
360
33o
366
480
192
"168
ITS'
3 7 .0
3 3 .6
V3
46.6
67
62
114
71
69
71
74
“152
T76' ” "67""
~T7'6'
“63 ‘
123
"T5B
“112
■'223
101
2oo
134
328
46
54
74 ■
68
66
71
66
62
97
42
X
X
21.0
16 .3
13.0
3 2 .0
12.0
53.0
68 .4
39 .0
3 7 .5
17.6'
21. &
13.0
12.0
12.0
15.0
42.6
36.0
2 3 .0
2 4 .5
O
•
35
36
1T 6
84
92
87
LO
33
54
272
176
42 .5
X
26.0
X
X
X
X
35.6
5 6 .0
83.5
X
16.6
X
X
X
X
X
O.fcl
6.13
0.14
0.06
' o.ie
0 .14
O.io
0 .2 5
o.£2
0.85
0 .5 4
0.82
X
0.25
6.48
0.18 ' 0.37
0.17
0.81
6.12
0.21
6.18
■5754
" 7T.T9 ' ""6733
0.41
o.ls
6“.T7“ “ 0.42
0.17
0.39
0.20
0.45
0.24
6.4B
0 ."26
' 0.48
X
T ' 0.16
X
X
0.23
X
■ '6V 4T
X
X
X
X
X
X
X
X
X
X
26.0
O.IS
" '-g’SYff ■ ' 0.86
33.5
6T88” ’
X
X
0 .T2 ' “ l’0 .'61'
0 .50
6.8o
0.30
TT.“33
35
TABLE II - PART A (Continued)
Fabric
Number
Thread
Count
Warp bill­
ing
D r y Breaking strength After 100 Hours
Accelerated Aging
Filling
C
Warp
D
Sum
Filling
Pounds
Warp
Pounds
pounds
pounds
C-frD
p er one per one
per
per
inch,
Inch
thread
thread
s trip
strip
Pure Dye
Silk
..T ~ "
2
4
ST
lA
bn
90
183
266
63
446 I T T
135“
6V
M ' ITS"'
265 i o 2
225 ' 66
X
X
X
"2370
X
X
50 .O
X
X
X
X
X
X
0.l7
14.4
X
6.17"
0.34
X
X
X
X
X
X
X
X
X
X
X
X
X
2 1 .6
6.2 2
0.21
X
17.2
X
6.16
X
6.19
07%Z
IVe igh.ted
Silk
272
34
176
62
T71" - - g y 366
75
'3 6 0 -1 67
366
92
31
32
"460 'TT4 '"
35
162 1■ 7 1 ■
"34
"T58H 69
176 “ 71
3S
36 ’ ’ " 152"' 74
3s
97
176
39
176
93
Rayons
T r 123
54
1 6 —D
156
74
17
112
66
■ s ---A-b-b
6 -D-S
29
Y&
226 n
2o
£2
1ST
200
“S's-b
“24-b
"55-E>
184
328
46
65
71
66
62
97
42
X
27 .6
X
X
X
X
62,0
X
X
X
X
X
X
X
16 .6
X
X
X
X
X
X
i s o .8
X
X
X
X
X
0.15
6.11
X
X
X
X
X
X
X
X
X
X
X
X
X
X
6.11
X
X
X
X
X
X
1 6 .6
X
X
X
X
X
X
2 6 .6
X
X
X
X
X
X
T 6.6"
'
0.67
X
X
X
X
X
X
X
X
X
"
6.22
1
X
X
X
X
X
X
<y;w “
0
.33
X
X
X
X
6.26
X
X
X
X
X
X
X
0.33
X
X
X
X
X
X
1.30
36
TABLE II - PART A (Continued)
Fabric
Nunbe r
Pure Dye
Silk
1
"S'" “
4
5t)
7a
9D
UDic
'.Veight ccl
Silk
3
3-D-B
6- d -s
29
50
51
32
83
34
35
36
58
68
rayon s
“15
1 6 —D
17
18
§0
22
25-D
2 4 —D
”2 5 -D
Thread
C ount
7arp F i l l ins
90
183
208 • 83
44“0
111
87
13 6
192
116
253 "To'S9Q
225
272
84
85 1
87
t t <t
TT€
350
360
35s
"450
•75
W
02
1T4
•71
Y§’2""
T58
T7(S
155”*
T73'
176
123
ll'2'
£"££
71
Ton
2 Co
43
93 '
54
*74
S3
65
158
154
358
69
*71 1
"7¥
9^
S3
62
"
'57 "
42
V/et; Breaking Strength Before Aging
Filling
VIelrp
F
E
Pounds
Sum
Pounds
Yv’arp
Filling
pounds
pounds
per* one per one
E*F
i nch
inch
per
per
strip
thread
thread
strip
SI .6
23.0
"3573'
31.8
17.3
85.2
17.5
18.6
0.34
6.16
0.21
‘""S. 55“
o.i3
37.0
27.5
54.4
37.5
3*7.2
46.3
12 .3
14 .5
0.14
18.2
5 4 .0
"17.3
38.4
36.4
31.4
31.6
32.3
3o.2
14 .6
10.4
1 1 .0
l3."S
26.4
18 .8
0.20
6". lo
0.10“
o.i8
8". 11
6.20
6.21
0.18
0.26
6.19“
6.17“ j
2 2 .6
8 .4
0.18
0.16
0.34
8.0
6 . 13
o.li
6 .2 4
1775'' ' 6.89
”3 . 5 5 '
6T 53
11.6
0.16
"”6.17 ' n 0 .3 3
16 .5
'57T7“ . ""S'.53“ “ ^"674'6
13.0
"77.*76
6 .1 2
"6735
1.6 .0
0 .1 1
0 ;ss'' ” <57o7
12.0
0.13
0.13
0.73
51.3
0.47”
6TS2' " ” 15799
3 2 .5
84.2
3o.6
35.5
54.0
32.9
20.4
3 2 .6
33. s
1 6 .7
23". 3
21. 0
4 2 .6
21". s
9 .5
1G .3
15 .6
0.26
6.155
6.16
0.31
o.4o
0.29
0.56
”75. T9'
0.17
0.19
0.65
6.56
0.66
0.43
6.37
0.37
0.42
”
0.15
0.16
0.21
6.13
S7T5”
0.15
6.15
6.31
0.13
0.15
0.16
0.5l
0.^0
0.29
orss
0.41
0.23
0.2C
o".2e
6.25
‘6.41
0.33
6.33
0.39
6.40
0.37
“
37
TABLE II - PART A (Continued)
Fabric
Number
Y/et Breaking Strength Alter 20 Hours
Accelerated Aging
Y/arp
Pilling
G
H
Filling
Sum
Pounds
Pounds
V/arp
pounds
pounds
G«*H
per one
per one
inch
inch
per
per
thread
strip
strip
thread
Thread
Count
V/arp F i l l ­
ing
Pure Dye
Silk
183
1
20S
2
44(5
4
135
" 515“ '"
' '7a '”” 192
263
9d
“ 255"
111)-::*
V/eighted
Silk
272
3
T7S"
8-1-B
8-D-S ‘T 73“
29
330
360
56
31
“ 568"^
52
43(5
33
192
34
I’g s
35
176
3G ' ' " 152
“S3 "'
1731
59
176
Rayons
15
125
16-D
158
IV
112
lQ
223
"20
lo'l'
&2
200
2o-D
184
24-D
328
26-D
f 46
90
83
111
8V
115""
162
98
"
61.2
3(5.2
29.9
25.4
99.2
49.2
¥579 “
84
32
37“
75
97
92"
114
71
69
71
74
97“
93“
36.0
22.4
29.3
36.4
29.0
44.3
53.3
35 •6
33.6
30.0
30.6
29.4
28.2
54
74
65'
65
71
65
52
21 .4
I s .0
29.2
43 •5
14.5
24.0
29.6
43.2
42
18.8
0.33
0. 15
' 6.26
0.19
0.15
0.19
T27'S"' ' 0.20
0.34
6.46
0.26
0.17
0.17
0.13
6.13
0.67
0 .55
0.46
6.36
6.32
0.34
6.43
12.8
0.13
T 5 7 S " ' (5.13
16.4
0.17
l<5.o
o.lo
6.68
' 13.6
13.8
0.12
12.6
0.11
12.5
O. ID
10.2
0.20
10.4
6717
13.4
0.20
18.2
0717
16.2
0.16
0.15
0.13
0.19
0.13
0.14
"6.T5
6.IS
o.iS
“ 0.15
0.15
0.18
0.19
6.17
0.28
6.28
6 •36
0.23
6755
'"6727
6.57
6737
' 6.3"5
6 •3'2
0.38
0.36
0 .33
0.14
O.ll
0.24
0. 33
0.31
6.22
30.8
3372
S97T
16.6
2"G70'
14.6
7.6
8.0
16.2
10.0
l‘2V2'
13. 0
‘1 " 1 F76 " ‘
11.6
19.6
0.17
0.11
0.26
0.19
0.14
0.12
■ o .17
o.2o
671T “ 1" "67T5 '
0.13
■““Cr.lTST '
o.4V
0.41
o“.5o
“ 0.34
0.31
0.52
'6".3'6
0.25
0.83
58
TABLE IX - PART A
Fabric
Number
Thread
Count
//arp F i l l ­
ing
(Continued)
Wet Breaking Strength After 40 Hours
Accelerated Aging
Filling
Warp
GH
Filling
Pounds
Pounds
V/arp
Su m
pounds
pounds
per one
per one
G*H
inch
inch
per
per
strip
thread
thread
strip
Pure Dye
Silk
1
2
4
56
7a
&b'
183
90
2o8
as
440
135
g
7 '
'T§2“ U S ’
'2733’h“l G 2
225
"35
3
272
84
S-D-fe
ITS
lift-*
41.0
29.0
55.4
24.0
32.6
40.6
42.6
26.2
26.0
26.5
11.5
10.0
11.0
lo.o
0.14
0.19
0.18
0.17
6.15
O.lO
X
X
12.5
13 •0
16.5
X
0.33
0.13
Q.lo
26.0
I 2.0
" 0 . 0T "
38.6
50.6“
27.0
27.6
27.0
2 6 .0
2S.5
15.0
O.ll
is. 6
0.11
o.i4
0 .Is
6.15
0.15
0.16
0.14
0.16"
0.14
0.22
0.29
0.31
0.24
0.15
0 .16
O.ll
O.lO
0.51
O'. 4 5
0.43
0.31
0.33
6.26
0.29
'/eight ed
Silk
6 -D - 6
25
36
51
32
i**r»
oO
34
35
36
56
36
layohs
32
175
a?
360 r T T
37
360
"535" h 3 2
480 1 1 1
71
T S S ”
S'6
163
71
T7S'
152 ’
“175"
175"
15
123
15- d
IV
168'
112
16
26
225'
"1.31“
“2 2
2o-D
24—D
26-D
74
07
03 r
54
74
S8
65
2oo
tl
66
1S4‘r
328
46
52
07
42
2 o.O
22.7
35.6
ia.o
X
13.5
X
X
X
.
X
l&.o
41.0
16.0
13.0
0.5
8.5
11.5
19.0
17.6"
X
6.3
X
X
X
X
14.3
12.5
19.6
X
0.09
X
X
X
X
O.lO
"STITT"
0.41
X
0.14
6.15
0.14
0.15"
0.14
0 .18
0.12
0.16
0.26"
0.18
X
0.09
X
6.27
6.26
0.24
0.19
“6 7 2 5
0.27
0.32
75"."3S
"6727
0.32
~6’.34
0.26
X
6.TS
X
X
X
X
X
X
X
X
■'6 .'23
0.13
0.45
“6 7 5 3
0T25
"6753
39
TAELS II - PART A
'
x
19 .2
Is.9
30.4
15.0
3o.O
X
11*4
0.3
5.9
lo.o
13.0
17.4
$•0
5.3
4 1 .6
23.0
25.6
21.0
21.4
21.6
21.4
'
GVCf
X
1 4 .5
1 6 .4
1 6 .5
X
0.23
0.26
0.26
o .IS
0.24
' 6.25
0.26
0.23
0.20
0.2S
O+
6.27
0.66
X
X
X
X
'
X
0.12
0.10
0.12
O.lO
0.14"
6.15
0.13
0.13
0 . 15
o.6s
0.12
0.08
0714"
6.11
67T7
0.10
(T:T5'' " “6715'
X
7.6
X
X
X
X
0.55
"T>T35
X
0. 25
0.31
0.21
0.26
X
O.ll
O.lO
0.08
O.OS
0.16
,.c ’*
16.6
14.6
X
0.29
0.25
X
O.lO
0.16
0.08
0.05
X
o.i5
6 •15
O •13
O.lS
t
13.2
r s ' .i "
4 1 .2
1 7 .S
0.26
o
25.3
21.9
X
£}.&
3_8 .8
o•k
os
O
4.6
to
'
48,4
46.5
x
26.2
26*5
34.2
35 .2
H
•
o
lure t>ye
Silk
90
185
' 1
" 2 ‘
"253
83
4
4¥0 1 1 1 “
S7
53)
155
ni:
llfl
7a
255
162
93)
93
225
1 1])->:V/eighted
Silk
84
27 2
3
"17 6
£>2
l-D-B
17
6
37
8-D-S
29
350 ' '75
30
otT5 ‘"“trr1
si
35 8
62
'1S7T 114
32
3&
7l
152
34
15 8
S9
35
'1 7 5
71
Ss
74
15 2
38
97
‘T 75“
3d
"T7TT 93
Rayons
lb
54
123
“LS-D
15c
71
17
11'2
16
1.8
122T
55
29
71
"131“
152
26 o
S'5
35-D
S2"
TW
24-D
97
35c
2 g- d
46
4T2
Y/et Breaking Strength. After 60 llours
Accelerated Aging
Filling
Warp
H
G
Filling
Pounds
Sum
Pounds
V/arp
per* one
pounds
pounds
per one
G+H
inchi
per
inch
per
strip
thread
strip
thread
O
•
Fatric
L’uiiler
Thread
C ount
V/arp Fill­
ing
(Continued)
X
X
X
X
,
0 .l6 "
0 .1 3
0 .3 0
X
6.09
X
X
X
X
6 .2 3
O .ll
0 .6 9
X
”'6T17
X
X
X
X
6.33
0 .2 4
0 .7 7
40
TABLES II - PART A
Fabric
Humber
183
~S'“
2 oa
4
4"4$
51)
.1 3 £
IsS
' 7A
Ob
265
1 1 I>::■~5S5"
f/eisilted
Silk
~ T ' " "" 272
175
8 -D-B
“170
8 -D-S
^20
' ” ' 360
30
360'
31
368
38
480
33
"IDI
153
33"
35
178
30
152"
38
“ ITT
39
175
Rayons
“15
123
”16 -D
158
17
112
“1 5
SO
22
25-D
ST-15 ”
So-D
V/el b r e a k i n g S t rength After 100 H o u r s
Accelerated Aging
V/arp
Filling
Q
H
Pounds
Warp
Pounds
Filling
Sura
per one
pounds
pounds
per* one
G4H
inch,
per
inch
per
strip
strip
thread thread
Thr e a d
Count
Warp l i n ­
ing
Pure Dye
Silk
^ . -
X
90
83
X
X
13*2
m
57
113
x
X
24,4
102
98
84
OS"
87
73
97
92
114' '
" H
09
"71
" 74
?P7~
' 913
'
64
74
38
33
“SS5"
"TOT
2o5
36
184
62
328 “■""37"“
4=8
4£
'
(Continued)
X
1 5.5
X
X
X
X
29.0
X
X
X
7”.4
X
X
3.0
X
7.3
O.lO
X
X
O.ll
X
0.03
X
X
X
X
X
X
X
X
3".2
0.08
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
5.8
3.0
X
X
X
X
X
X
X
X
X
X
X
X
1 4 .6
X
X
X
lo .o
X
0.64“
X
X
X
X
X
X
0 .3 2
X
X
X
X
X
X
0.69
<5719
X
X
X
X
O.oO
0.14
X
6".63
X
X
X
X
X
0.18
X
X
X
X
0.07
U .i-O
X
X
X
X
X
X
X
X
X
X
X
X
X
0 .0 7
X
X
X
X
X
X
0 .2 4
X
15711
1
X
X
X
X
X
X
0 .5 6
41
TABLE II - PART B
PERCENTAGE LOSS IN BREAKING- STRENGTH AFTER AGING
Fabric
Number
Percentage Loss In Dry
Ere aking Strength.
100
40
60
20
hours
hours
tiour s lours
1
Pure
Dye
Silk
1
6.3
2
6.0
4
"1.7
5d
10.5
4.2
7a
9d
22 . S
6.1
llD-::IVeigiited Silk
3'
8.3
670-B
£.1
8-D-S
29
3.3
30
S. 6
si
32----- -
33
34
S3
36
38
39
llayons
15
IS
rr
28
So
22
5o-t>
24-D
£6-t>
O.
0
1.3
7.2
0.C
15.7
12.6
29.8
S.3
“ 10.4
25.3
17.0
9.1
1.3
X
21.2
X
X
0.6
12.5
IS.o r 57.3
rr*
3.^
kJ• O
dlTT"
2.8
6.6
0,3
5.7
” e>.3‘ ■
8.6
5.4
3. 9
O. 1
5. 6
3. 7
'1275'
26 . e
17.7
ST.'S
4 74 '^ T 5 . 2
rx.ir-'
r 5.4
3.5
h
0.0
7.3
~n.T
HT577
X
X
X
46.4
X
X
3'4'."X
X
32.7
Percentage Loss in'*Wet
Breaking Strength
20
40
60
100
hours
hours
hours
hours
3.1
1.8
“
5 .0
21.5
TO. 6 H
24.0
15.4
32 .T
X
14.3
26.2
40.3
13.5
8.1
2.4
10.8
26.2
■SS77”
5l. 0
43.2
52.4
3.4
X
T2T5'
26.6
X
12.2
31.7
X
X
■•'"070 “
15 .4
5.6
25.7" "
3.8
X
“9.8
X
54.8
X
X
65.7“
X
50.0
51.2
X
474" * T5.T> ..
X
26.9
X
42.3
10.7
X
14.3
3.2
3.2
56.0
2'2.0
36 76
X
TS'.V
X
X
X
~ ‘"27'S'
3.0
2.6
18.2
X
X
10.0
15.0
2 4 .5
h 10.8
X
2571
X
X
X
I s .6
"3'67T "
30'.4“
35 *2
“
4 5.0
"27.0
X
X
X
X
X
....
3. 4
3. 2
4. 6
X4. 9
77 4
o •5
12.1
X
" 15.7
X
X
X
X
77 6
7 .6
3 .8
5.0
1 5 .£
X
19.6
X
X
X
X
7.6
577
26.4
X
*7*7• O
*7
Oo
X
X
X
X
X
X
rss.o
S.8
X
X
X
8*5
26.0
“W . T
"*5472“
9.r
X
X
X
3.0
X
X
X
O p r;
X
X
0.0
X
X
X
lO.S
10.8
"2.7
X
"6.6
4 7 TT '
X
■‘4'76 '
ll.l [■“1*3."T ”
43.4
^Garp-Pure fyo SL11:; Pilllng-Cuprarrnonium Rayon.
"Not enough fabric available for this test.
42
TABLE III - PART A
BURSTING STRENGTH OF FABRICS BEFORE AND AFTER AGING
Fabric
Number
■■■■'■Cry— ""“i
Dry bursting Strength
Bursting
After Accelerated Aging
60
100
Strength.
40
20
Hours Hours Hours Hours
Before
Aging ..
Pure t>ye
Silk
1
2
4
5D
7A
9b
ilb»
116,9
llO.l
108.1
105.1
92.3
136.5
196.2
loO.l
146.6
116.5
Y4rV5
75.3
79.6
100.2
96.2
" '72'.4 ' 69.0
79T2 ■ 93.9
100.6
97.6
92.e
“
92 .9
Dry Bursting
Strength After
Natural Aging
X
'76.2 '
99.1
X
72.1 "~51T4"
59.9
X
94.5
X
69.0
Weeks
X
X
X
X
X
24
12
Weeks
X
71.2'
57.2
78.e
75.6
56.9
91.2
96.3 ” 61~.9'
31.0
Weighted
Silk
3
76.0
71'.S' '"
1
Q
1
CO
78.9
65.4
C
ft
8 -b-b
29
30
31
"35
33
34
35
36
53.1
85.5
94.2
80.9
64.2
” "57'.4' "
69 •9
96 •4
78.2
“35
£9
Rayons
15
69.7
17
.18
20
22
23-b
24-D
26-D
...
X
X
X
61 •1
63.9
65.5
T3T5” ""57.0'" 44.7
’"Y4'.T ' 80.1
73.7
77.6
84.4
96. 9
64.6
99Y4"'
90.7
78.9 ~72Y3
74.4
'
64.7
59.1
66.7
So .9 '"5¥.r '
65. 5
67.2
65.2
51.0
■
W
#
£
"
“
87.1
75.6
75.6
82 .6
7TT5”
X
56 •6
X
X
X
X
90.9
114 .4
X
X
X
X
X
X
X
"TITS'
X
X
X
X
X
X
66.0
?0 .I
43 •5
68.1
6l.§
46.8
32.9
32.8
81.4
62.2
68.9 ~T374~
44.0
36.2
89.6
76.9
X
X
X
X
76.0
88.7
X
X
37.'0"
50 .S"" 45". <J
'
62.5
X
58.2
56.8
127.6
T23Y8
X
TC2“.T" ' 105.4
X
61.3
X
79,4
'75.6'
X
76.2
75.6"
79T5
lo7.6
105.6 YS6.I
" 79'.7
77.0
74.0
63 •5
“16b
82.1
51.9
"
ST.7' ”37'.'0
'
71.3
6o.l
X
60.4
X
X
X
X
79.1
50.9
52 *8
X
46.2
X
X
X
X
69.6
169 .4 '107.9'
""7^.'4"'r 56.0''" 65.3
63.4
43
TABLE III - PART A (Continued)
Fabric
Humber
Wet
Bursting
Strength
Before
Agins
Pure Bye
Silk
1
2
86.1
‘
5D
7a~
156 . T ” "
'4 T . 3 " '
6 4 *2
73.5
0I>
U T k :-
69 .9
i7eigh.ted
Silk
3
8-D-B
8-D-S
29
30
57.0
4:9.2
55.3
34.9
64.0
Y4.0
31
32
73.5
37.4
35
34
r
47.3
33
46.3
56
47.3
52.5
53.9
38
39
85.0
67.(5
7 6 *6
4
Jr
Wet Bursting StreiigtkL
After Accelerated Iging
20
40
60
'TTOO"
Hours Hours Hours Hours
136.5
44 .6
63 • 0
65 • 2
46.5
73.7
56.3
75.5
62.0
TI5.5 1
X
”4'4”3 1 46.9
'36:6
63.2
T 3 . T “ 32.6
”'“54.5""
35.4
V/et Bursting
Strength. After
Natural Aging
12
24
Weeks V/eeks
X
X
X
30.0
X
X
24. 7
59.4
X
X
X
”“£3";r“ 4 6 . 5
43.5
2 0 .0
4 5 .6
36.7
43.3
''
X
"■"51“ 5 " 54".'7 ' 54 •5
X
36.1
42.3
50.1
X
“ 71.'
0 " “ 5 4 T 5 “ '"38 .V " X
74.4
77.5
57.6
£2.4
56. 5
55.2
51.3
X
r 43.3
4 4 •6
X
42.3
47.5
"""4'2".V"
56.3
46.3
44.5
43.7
o9 .9
52.6
46.6
“ '■'3777 '
47.5
45.7
X
'mS7,~3~
X
X
39.5
X
40.0
3 2 .5
59.2
54 .1
52.6
61.1
32.2
46.4
X
X
2‘'
' 21.9
51.0
40.3
rrz§~
25.9
22.4
50.6
52.4
64.5
50.4
32.7
45.5
34.3
46 .T ""5T.T“
36.5
33.3
53.5
45.8
37.0 ‘ '£4'.<T
3S.6
57.
X
X
X
■T 5 . 7
25.5
X
X
X
X
Rayons
15
161)
17
“IS
”2 9
22
23-B
24-0
2S-D
^
36.6
29.9
5*7.6
49.6
3(5.4
43.8
43.0
T9.2
47.8
36.1
23.6
59.0
5 6 .5
27.8
43.1
44.6
55 •0
45.2
X
26.3
X
X
X
X
44.3
54.2
39.7
X
23.0
X
X
X
X
48.7
55.3
40.8
X
X
X
X
X
X
34.6
X
X
X
X
18.1
X
X
X
X
42.4
38.8
■5'4 .1
51.6
32.3
"44 .O
44
TABLE III - PART B
PER CENT AGE LOSS III BURSTING STRENGTH AFTER'AGING
Fabric
Humber*
R u e Dye
Silk
1
' 6
4
SB
Ya
'st)
120:-
IVeIfglrted
Silk
3
D-t3
S-t)-S
99
Sc
31
32
te
34
35
36
36
*39
R aprons
IE 1
16-d
1*7
16
So
22
2i3-t)
24- it)
26— D
Percenba^e Loss in l>ry
Bursting Strength After
Accelerated Aging
20
40
60
loo
Hours
Hours
Hours
Honrs
10.2
7.5
4.5
"6.4
7.(5
4. (5 "15.4"
1.8
5.3 k
0 . ‘4 ' 13.6
3.4
3.5
21.0
6.1
X
5.0
16.9
IS .7
sTaTS
X
X
X
36.3
X
X
47.0
Pierc'entage Loss in
Dry Bursting Strength
After Natural Aging
--- 12
24
Weeks
Weeks
X
lo.o
X
6.2
11.6
9.6
0.1
X
30.8
X
64 .6
1.0
65.1
35.7
0.0
X
X
X
X
X
6.1
14.9
1 1.0
46.5
3.1
39.4
I S .1
6.5
43. 3
X
11.6
1174
13.6
26 . 5
12.7
X
64.5
4.9
6 . 4 ’ ST/S' "“ 41.1"''
X
83.9
“ 1.5
6 ,8
1 .T ' ‘
X
" ' *' T S .1 "■ I S . 5
3.7* ' ""5V£ ' 61.6"
1#8
4.9
18.4
1 . 6 " 6 .3
X
lo.S
0.5
16.6
2.5
6 ,fe
X
5.1
6771“ '
14.1
6 , 1 ■' r r . T ''
X
--------ITS"' ■ — 4 6 7 1 "
3. 2
673
96.0
X
13.4
1375” "
6.6
1 1 .£
91.7
X
6g.o — 17.5" ' ""
5 •6
3. I
1.1
X
’
“£ S 7 r ~
"SITS.........
10.3
8.5
X
"T577
X
11.0
3.1
171'
93.5
4.3
X
X
X
X
X
X
X
X
3.5
1 .*7
IS .2
3.5
“ 7.6
6.2
3.2
3.4
6.9
X
34.1
X
X
X
X
X
X
69.7
X
3.6
X
X
X
X
1.2
6V 6 '
13.7
X
27.4
X
X
X
X
T T Y 6 ... ““6 .5 .....
”2"6.'4
45
TABLE III - PART B (Continued)
Fabric
ITujn.ber
Pure Dye
Silk
1
"S'"'
4
5t>
7A
9D
llD-::Tel^rTeT1
Silk
3
S-b-B
8-D-S
29
36
31
32
3 3
3 4
3 3
36
“So
35
Rayons
15
16-D
17
18
“go
o o
53-D
54 -D
26-D
Percentage Loss in Wet
Burstinr; Strength. After
Accelerated Aging
20
40
60
100
Hours
Hours
Hour s
Hours
1.3
ISIS’
6.5
9.3
T.2
11.3
33.5
12.3
19.1
13.1
16.5
1.6
20.1
50.1
14.4
34.3
X
7.3
8.1
SO.3
49.4
X
X
X
35.4 H
X
X
64.7
4.2
0.3
17.3 '
0.0
6.1
4.1
1.3
3.5
5.5
1.5
16.3
4.5
3.1 .
X
17.7
22.6
6'.'?’'
5379
13.2
2.9
10 *6
5.7
4.5
16.2
i 2.6
T.K"
X
11.6
53.9
'O'.7
38.9
£0.7
11.5
8.0
10 •6
6.3
£0.8
X
47.2
X
X
1.4
1.4
2.4
r.o
"3.3
1.6'
5 . 3
5.1
5.4
r
So. 2
10.2
X
■v*
9.3
3.4
X
X
X
X
X
X
X
X
3.0
3.5
13.6
X
X
31. 6
X
X
X
X
X
X
X
42.4
X
X
- £ ~
X
15.3
X
6 . 3
X
14.6
27.0
Percentage Loss in
Wet Bursting Strength
Afuer Natural Aging
12
24
Weeks
’Weeks
X
X
16.2
7.6
“28.2
35.1
48.4
X
34.3
15.7
30.5
53 •9
X
21.3
16.1
7.3
58.0
51 •6
13.0
12.2
0.0
13.7
16.1
23.0
25.7
X
“ 2T7T
" 60.5
23.7
72.0
69 .7
48 •6
30. £
'27.3"""'
4 6.“
4
30.0
46.3'
5l .V
25 .S
X
X
12.1
X
X
X
X
1.4
3.7
r*...... 1
-^Warp-Pure Dye Silk; Filling-Cupranmionium Rayon.
“ Not enough fabric available for this test.
X
27.6
x
^
X
X
X
9 .G
8 . 2
r 32.4
”
_
46
TABLE IV - PART A
THE ITTITIAL AI-TD FIILAL pH VALUES IIT
TIbE RESPECTIVE EABRICS
Fabric
Humber
~ iRH” o r * ' 3 pH After AccelLerabed A"ins
Original
100
20
40
60
Hours
Hours
Hours
Sample
Hours
" “p l T X f F e r '
natural Asins
24
12
Weeks
W e eks
Pure Dye
Silk
™
1
S
4
5D
7A' ■
6.40
5 .45
6.70
6 •6 5
9D
6.46
6.59
6.56
6.22
6.54
3.38
6.32
6721
6.59“
6.70
5.5s
6.24
5 •53
6.16
5.40
6.01
5.17
X
5 .38
X
X
X
X
6.01
6.44
5.77
5.39
3.65
4.91
X
5.23
X
3 .9l
X
4 .79
X
5 •63
X
6.14
5.71
X
5.65
4.79
5.43
4.52
i7eIjilted.
Silk
3.77
5
3.53
x
X
X
X
8-D-3 ' ''7.3T "" 7".51
7.32
7.2'9
6.73
Y.31
8-D-S
7.3 3
7.44
7.47
7.67
7.13
X
29
‘'7.'54' “ '' 7.66
7.49 ‘“772'S"‘
X
7.36
30
3.71"
6 .72
3.67 ' 6'.'3o” ' X
6.06
31"
7.30
7
.
3
2
7.08
X
“7.53
“ 5 .~3l’
32
6.97
6.70
6 •95 "'6.75' ' 6.76
6.35
6.02
7.64 " 5.73’' 6.32
S3
X
6.78
34
1
6.74
'"5.'57“ 6.52
6 •56
X
6.3o
35
6.53
6.37
6 .59
6.44
X
6.11
36
s.4o
5.09
8.12
8.12
X
7.21
38
8 ."37"'
3 .43
8.49
3.42
X
7.91
30
s •55
"8.52“
3735" 2754
X
' T5.“3 T
X
6 •55
6.08
6.96
" s:v s
6.66
6.37
6 .35
6.04
5.67
'"7775
“7 .'94
8i73
Kayons
TS
5.14
13- d
17
13
20
22"
23-D
24-D'
26—D
6.62
5.74
5.06
5.82
3.66
3 .86
6.54
4."35'
5733
5.30
’ 'T.57
6.40
4.47
6.Y7
4.33
'
4.71
6.12
X
5 •30
X
5.30
X
X
X
X
4.91
4.61
6.25
X
X
X
X
-
5.0l
6.17
X
X
X
~ 5 7 3 F ' “' 5.57“" '“4745
X
X
X
X
X
X
5.40
X
X
X
X
4.54
4 .49
X
X
X
X
4.03
4.42
s:sr~ ~ “3 .71
47
TABLE IY - PART B
CHLAUGUSi
IE pE VALUES III TEE BESBECTIVE SAHPLES
pH o - £
Qri:yl__ n a l
S ainp>- le
Vabr’V c
Hunber
Changes in p H Values After
A c c e l e r a t e d Ap;in£
.
20
40
GO
100
Hours
Hours
Hours
Hours
Cfiances In p H
Values A f t e r
N atural A p i n y
12
24
S
e
eks
V/eeks
0.06
0.74
0.14
-6.43
O.lO
-0.14
- 0.18
X
- 0 .2.2
X
-0.7T
-0.46
- 0 .56
-0.79
Pv.no Dye
r*.•Ln
O
>i
j_1
t
._
1
o
4
516
VA
QD
llD-:$*
Ueiy'ht ecu
Silk
5
8- D - B 6
69
SO
51
SO
So
54
35
3G
38
59
Rayons
15
16— D
17
Is
5 .&
Z>
o
r.
o
41
S
8.5 o
0.24,
7 .B 1
0.00
7.s u
-0.39
"7.5 -4
o.oO
M . 7 1 1'
0.01
7.5 O
-0.17
’ 676" ‘V
Y -"6777
3.9 2
0.12
6 . 7 --4
-0.07
e.5 --o
67613"
8.4 - O
-0.31
8 .S **7
- 6.22
™ sVa'-E‘~' -0.33
1
V
V,
i!
'i
i
6.2
O
5.1— 4
G .5 ^ 2
5.7— 4
G • 5 —4.
4. 9 ^ 2
G . 3 ^3>
5 . 5 0
20
22
23-D
24-D
0.45.4€. 7
o.r>
G.G
C.4SD
-0.03
r - 0.60
-o.ls
- 0.66
-0.T3
0.14
-0.07
-6713
-6.4 4
- 6 .o 2
-0.23
-6.46
X
- o '.
66
-6.3"6
-0.05
-6.03
- 6.18
- 0.02
-0.63
- 0.66
-6.09
-0.28
- 0.18
- 6 .26
X
-1.03
X
X
-6.07
X
X
X
-6.G4 1 -0.7(5
- 0 .16*1
X
-0.47
X
-0.63
-0.G7
X
- 0.20
-6776
-6.25
- 0.21
-0.42
-0 .16
X
-0.42
-0.39
o.o4
-o.6c
-0.37
-0.24
X
X
yw
X
-0 .18
-O.lO
- 0.68
-b.lo
-0.28
-6.26
X
-o.Si
X
X
-1.24
X
lw
X
X
- 0.22
-'
rW
_
X
—
<w
r
_/
-0 .29
0 .07
-0 .52
X
X
X
X
jZ
-Y."27“
■v
X
X
X
X
-0.75
-0.76
-6.17
-0.65
-0.59
-0.42
-0.14
-0.44
-0.42
-0.59
-0.76
-0.54
X
_ JV.♦TOTF*.
T
—
j"'
yi
X
-2.16
X
X
X
X
X
X
-1.09
- 0 . 2 2
-•>;V/arp— P\ur»e Dye
Silk; Hilling-Cupranrionium Rayon.
“Hot enou'li. fats=»'r*ic available for this t e c t .
X
- 0.95
-0.85
-6.76
-l.ol
-0.96
"-757BB
-0.57
-0.7Q
-6.65
- 0.62
' -6.73
-0.56
X
-0.76
-o.le
X
X
-0.56
X
- 1.02
-0.89
-0.S1
-6460
X
.-7777
-0.25
-0.78
48
TABLE V - PART A
PERCENTAGE OF WATER-SOLUBLE NITROGEN EXTRACTED
FRO 1,1 THE SI LIT FABRICS oEFORE A“l5b“ AFTER AC-liTG
X b a e e d OF TEE WEIGHT OF PURE SILK
~TxBTroTrr~i TTE a c h f a b r i c )
Fabric
ITuxnber
Pur e Dve
Silk
1
O
t--*
4
5D
7a
9D
1 I d *-
Weighted
Silk
o
8-D-B
8-D-S
S o
30
3l
7O
35
34
65
3S“
38
39
Una^ed
S ainp1 e
Percentage of WaterSoluble nitrogen After
Accelerated Aging
20
40
60
100
Hour s Hours
Hours
Hours
0 .92
*1.34
5 .52
4.83
7.37
^7.34
4.59
1.54
” iyt7
2.T6
"4 ’.0'S
4.54
5 . el
iris
2 •55
2.69
2.48
"4.10
2.29
3.76
1.76
7.29
8.36
5.45
6 .35
4.24
5.35
4.14
2 •65
5.30
5.77
6.34
2.75
0.14
2.72
.3.58
4.59
4.95
2.0l
7.45
X
4.40
C.35
5.54
4.78
S . § 2
2.95
4.81
6 •56
0 .09
3.56
4 .74
2.89
2.56
3.10
£.78
4.42
• /O
r 5/56
o . l S
1.64
~1V9'2
X
‘_
r>•oJ.
o “i
<
4.34
5.66
1.82
X
X
X
5.63
X
X
5.23
Percentage of“
Water-Soluble
Nitrogen After
Natural Aging
24
12
Weeks
Weeks
X
4.69
X
4 .74
4.96
7.65
4.85
X
4.52
X
4.62
7.44
9.44
3.05
X
X
X
X
7.07
6.41
6.41
8.60
X
G.10
5.89
8.93
X
5.23
4.'58 ' " F725
3.47
X
8.88
4.55
""6Y47
3.97
X
5 .S§
3.43
u .o5 -Y.22- ""' ~S'.TE
5.31
X
4.46
4.77
X
4.52
s.o6
“ 5 .“76
X
4 .62
0.46
T7SS"
■
4 .34
yVv
7.ol -- "SI'S1?
X
3.15
6.04
8".31
X
4.63
r £'.
'
rT.T? "
49
TABLE v - PART 3
‘ T 1 —' C» T “•t rp*r^-^ n r ' - ^ n-r ■•■»
k*
.
-j.-. 1 -u*«j x
.1
■i t r '
o r l t T Ib ^ r X c ’
tet T
..1'•u—l
oi-i.. :- S 0 LUBLE
iTHK TA B :cs
Ft
m
BEEORF ALL AFTER ATIRQ
Unaged
Sar.iple
fabric
I'lmbor
fui’n R y n
n Ii_: /
.
0.02
1.34
3 •32
4
A
r«*»
-t
or;
or>
7.7/7
7. 34
P 4.39
.
Change in Percentage of
Via t e r - 3 olu’n1 e IT11 r o7;e n
After Accelerated Aging
40
00
20
100
Hours
Hours
Hours
Ilourr.
0.62
0.C3
-1.06
-0.S2
-3.15
-1.73
1 -2.41
1.03
1 . 35
-1.04
-2.77:
-6 .00
1 .22
> r'*
“*/r•#O4-!
Change in
Percentage of
Wat. er*-Soluble
Hitregen After
natural Aging
24
12
WeeHs
We eks
0.72
X
X
X
3 .35
0.57
X
*
-1.25
-1.67
-0.14
-3.03 1
-S. 4T
-1.8G - , X r -0.11
O r ry
0.34
0.46
.
TO
------- ---- r_. _ - ----
X
3.1C
X
-6.19
0.67
1.90
-1.34
pn.::bo'^r
u i r r 7- »
o
[._ o - i f - r
I
'—'*• 2/ K*>
i “ "or;
■JH
oO
HI
72
35
1
Wr" 1
f.Jt /
•)L>
33
39
*-7 o n
< •^
3 * 3 L*
r>• yTr:
t
O
L' • <w-O
.1
o/
- •.
b*X
5 * oo
4 •14
2.65
3.30
6.77
C . 7,/2.75
5.14
,*
r-rj
X
_o
or,
-5.06
-T.29
0.65
./l.
0 .00“
"■•
m!rrmm ■
_
0 r,
— 1X . w
' IS
— e; ♦ o i
-2.52
it
~
®*O<
■-»•O'?<Ld
6 .54
-0.77
4T
w
2.10
-2 .17
X
•• i. » o o
-0.92 “-T.TJT* “=75772““- 0.21
-O'. 15^
0.66
X
-2.20
0 .Od -0.70
X
-0.29
— 0 .GG
-2.15
X
_
O
OO
_ 1 00
■*1,' •v>e* -2.00
X
1.03
5.60
0.40
X
0.54
-0 .25
-0.16
X
-4. 78
-0.76
X
-1.95
0.44
-2.27
4.64
1.. 12
O'.Y u
1. 31
o.4s
0771
0.67
■'3T2‘0'
4 .00
■:F,7ar'p-Pure Dye Silk; Filling-Cuprainraoniuni Rayon.
Ylot enough fabric available for this test.
0.33
3.46
“ -T.53
0 .31
0 •34
1 .05
2.15
0.75
■r 1
O’.63
^ «*3(5
50
TABLE VI - PART A
,-1' / ' ' ■ ' h T T " , i - r\<
'VT.' - > ^*
•
L
^ ^.IAj nT
x- —
■.IA
i^u
j.;r;;An*'
u liii i-i
Fabric
Humber
Rayons
15
l6-D
T 7
13
2o
-23-D
24-D
26-D
Fluidity
in Rhes
of Unaged
Sarrolc
14 .90
15.94
12.32
12. SO
11. G2
2 6.97"
21.76
17.22
14.37
T;1
.ii J. o
Fluidity in Rhes After
Accelerated A,Ring
100
40
60
20
Hours
Hours
Hours
Hours
18.09
22 .08
12.59
Fluidity In
Rhes After
natural Aging
T O
24
Weeks
Weeks
X
X
X
X
21.99
“19.01
ST.Ol
26.30
25.91
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
'SSI 34
l7.6'4
26.79
21.56
'T0.'4'<T
12.93
22.14
”51 ."36' T 9 . 33
19.39
9.6. ( S T
13 TO'
15.54
lBLE
20.04
15 .09
13.15
15.91
T0.T5
13.44
VI - PART
■GE I” FLUID TTY OR C UPRA’I lOITIUU- CELLULOSE
'TTr''I.'.'-*
TO'’T
—iU->
—>—■ xii,
^ "T
\ ^’.in*?"' f ■>t'tr 'r^ ^Ylr"i rrn
re
* kj
J.) n i 1 .j;l Av; X -•.*(i*
jU i
Fabric
Humber
Rayons
15
16-D
17 '
13
i 20
| 22
) 23-D
1 24-D
T - d
Fluidity
in Rhes
of Unaged
Sample
Change in Fluidity After
Accelerated Aging
Treatments
100
20
40
60
Hours
Hours
Hours
Hours
X
X
14.90
3.19
X
5.57
16.94
6 •05
0.67"
7 .o4‘
12.32
X
0.27
X
X
X
12.30
X
X
1.19
I'.DT'l
11."62
X
X
X
20.97 '
X
X
1.17
X
’ "STIY'TO
-2.4TSO =T772 h
X
6.10
17.22
X
"2T6T 1 2.1"7 —1.55
T 4 . 3 7 " ' 0.67
6.05
-1.74 ^ T1 .04
xHot enough fabric available for this test.
Change in
Fluidity After
natural Aging
12
24
Weeks
Weeks
X
X
4.91
10.03
X
X
X
X
X
1.08
0.42
-1.45
X
X
X
5 •05
4.71
-1.45
PERCENTAGE. • lObb-IN- bREAKING- 6TRENGTH- 0F- PURE- DYE -6IIK- FAbRIC6
(ACCELERATED- AGING) 1
DRY 6 T R . E N G T H
20
40
GO
WET 6TMNGTH
IOO
HOUR. 6 -A G E D
20
'i-'ure 3
40
(60
IOO
HOUR*)-AGED
The Key to the fabrics in Figures 3 to 32 is found in Table I-A, page 25.
Irm
PERCE MTAGE
CAIN
PERCENTAGE- L 0 6 b
§
------ g1--- ---«1
------ 1
—
ro
o
g
-r
o
T"
O
0
xj y »
Jyv
/X \
//a/ ' '\\
{
1
V
1 1'
/
1
O
O'
<3>
7>
-<
•
o
•/
/
i
4
ZP
—
&
rn
zz
a
—H
u:
o -
o
o
^ £
o
>-d
H*
cn
p e r c e n t a g e
P ERCENTAGE- LQ £>5
C
D
GAIN
r<j
o
cn
o
KJ
d o
29
<0.-.
OF R A Y 0 M 6
o
c»
:
L O ^ • lh b M A K I M G ± ) T K t n G T H
(ACCELERATED' A G I N G )
yy?
j
-
o
c®t*
"
P[ O U T A G E
u?
“
n:
NS
c5
■ 1-------1--- ---T--
P E R C E N T A G E . L C b b IN D R Y - E > U R 6 T I N G • S T R E N G T H
OF
PURE DYE t»ILK
ACCELERATED • A G I N G
NATURAL AGING
UJ
n_
>n &>*
45
UJ
Q_
20
40
IOO
12
HOUR6'AGED
WEER6 AGED
Figure 6
cn
50
ACCELERATED- A G I N G
gain
PERCENTAGE.
P E R C E N T A G E 1 0 5 5 IN V E T b U R 5 T I N G • S T R E N G T H O F P U R E D Y E -5ILK
NATURAL* AGING
15
o
1066
16
50
HO
\5D
PERCENTAGE
45
(oO
IS
SO
20
40
0,0
IOO
12
H 0UH5* AGED
WEEK 6 AGED
Figure 7
PERCENTAGE
P E R C E N T A G E L0 6 6
M
o
X
O o
c:
7°
O'
S'
o
o
a
o
o
H*
CKI
<t>
OD
pn
7^
O'
o
M
*
99
«
CDCDO>
10O
ir*
I aI I•! ;
jr
iutyiyiyl>*
uo»(!hf
4*
at
at
at
o»
o>
o
PE BvCENTAGE- L 0 6 t ) ' IN - D R Y ' b U B ^ T I N G - b T R E N G T H
OF WEIGHTED-6ILK F A b f U C b -
£
m ;
xo»»
S?
GAIN
• P E R C E N T A G E - 106^ IN WET- b U R ^ T I N G • S T R E N G T H
•OF- WEIGHTED-E?ILK-FA5RIC6uj
0
<
30
N A T U R A L AGING
ACCELERATED A G I N G
^ r 16
rUJ <
3°
0
UJ
O.
\b
>n
\ \
y''~-
'N
\\
\
46
\
5
c
§
|
(00
u
"
---3
... 33
---606 --- 34
---frD-S--- 35
--v H
-- n
-X-M* 32
) __ ___ L
301
20
1
1_____ 1_____
40
(2>0
100
H 0 U R 6 - AGED
1
12
1
2+
WE EKE)-AGED
Figure 9
01
<3
PE R‘ g E/T i m A G E
P E R C E N T A G E lObb IN DRY & U R 6 T I N G S T R E N G T H
Of •R A Y 0N FA & R IC 3
24 0
22
26 D
20
L06f>
PERCENTAGE
NATUPCAL A G I N G
ACCELERATED A G I N G
16 D
60
20
40
12
100
HOURt> AGED
24
W E E K 6 AGED
Figure 10
<
cn
03
W EEKS-AGED
69
Cv
O
ro
IDVIUlDMJd
ho
O
HlDU3Yll<f -0MliQMnG-13A\"WI
JO
HOUAS-AGED
Figure 11
M-
^D I'dQ V J-K lO A V 'H
PEACEnTAGt L05^
percentag e
.
GAIN
CHAMGE-IM-pHVALUE.6 0F P1M DYE. 6ILK FAbfMC6
ACCE LE RA TE D A G I N G
N A TURAL AGING
10
H CHAHGE.
05
00
~~05
-/.o
-15
-20
20
40
dO
IOO
-H 0 U R 6 AGED
12
24
AVELK6 AGED
Figure 12
O)
o
C H A N G E - IN'pH •V A L U E 6 • OF W EIGHTED 6ILK F A 5 R I C 6
A CCELERATED AGING
N A T U R A L - AGI NG
I0
0 5
fJH
C H A N G E
3-o
0.0
'0 5
-10
-15
-
2-0
----— o—
— t—
>«»♦«
•— ..
5
806
806
1T
30
3'
3*
33
20
34
-— 55
- - J(*
a— 38
4— ^3
40
GO
IOO
\Z
HOUKVAGED
24-
-WEEK6 AGED*
Figure 13
^
H
}
5
CHAMGL
IM pH. V A L U E D OF RAYON F Ab RlC 6
ACCELERATED AGING
NATURAL AGING
H- C H A M G L
05
00
2fr P
-20
20
40
GO
100
24
12
HOURA AGED
W E E K 6 AGED
Figure 14
0)
to
C H A N G E IN THE P E R C E N T A G E OF W A T E R - b O L U b L E NITROGEN
E XTR A C T E D -F R O M P U R E DVE 6 IL K F A b R \ C 6
ACCELERATED
AG I MG
4-5
C 'H A N •G E
•
PERCENTAGE
3-0
7A'
/
NATURAL- AGIHG
\ \
DO
1-5
3.0
2 - 6— 6-
-6— 6-
AS
GO
10
40
00
100
AVEEK 6- A G E D 24
• H 0U R 6 AGED
?i£urs 15
• C H A N G E I N T H E P E R C E N T A G E O F MTER.-601U&LE NITROGEN
E X T R A C T E D F R O M WEIGHTED t?ILK F A D R I C 6
-<o
NATURAL AGING
A C C E L E R A T E D AGING
CHANGE
-4
3°"'^
&-D-*
PERCENTAGE
-3
■l
■29
0
5
4
1
to
20
40
GO
100
24
12
WEEK^AGED
HOURA-AGED
Figure 16
C H A N G E IN FLUIDITY OF C U P R A M M 0 N I U M - C E L L U L 0 6 E
6 0 L U T I 0 N OF KAVON F A b R IC t)
ACCELERATED-AGING
NATURAL* AGING
-15
CHAflGE
IN'RHE-fe
'10
16 P
20
40
24
100
K 0 U R 6 AGLD
WEEK6 AGED
Figure 17
a
01
K e y to Figures 18 to 52
Solid lines indicate dry strength, tests;
Dotted lines indicate wet strength tests;
(A) indicates tests on samples subjected
to accelerated aging tests; and
(IT) indicates
tests on samples subjected
to natural aging tests*
j *•
FERCFNTAGr CHANGE.
percentage.
ph CHANGE
t
i
f
f
*v» - - O O O r
PERCENTAGE.
'N
o tn o ^ o vJ* o 'f’ o
-r i.r .^.1..r. i, ■f 'V » f f
Oo
K#
t»o
-4* O
>*v*
?om
r,
»•
cc
r
f*5
~3
<*o
»
-i
> >
J
-J.
c; ii>
r.
9
prl CrtAhoE.
'^Lm .;.
i IAu F ^ kANGE.
,
6\ -u j. — 0 — y' <L (h
o ir> -! 0 ^ O ^ O
~
"T1- T --- '1 1| ' 1
0> .
r
1
I
\
\»
>
T
N
O
X '
A
-
;
z
n» _
r» A
U
■
z
-n
0
>*
?D
0 P*
0* *
m**
0 T1
£■,
c
0
m
-J 2
J
f
'»
/f
P
0» O VII
0
C0 '
//
,
S*i
r
n
1 {-
PERCENTAGE
r-
i
A
//
/ /
< < / /
/ r» /
/
<
PERCENTAGE
.
> i
r «. “
v -< X>
T rn r
B * <T,
m
J
►j ~ - o o o “ -'sJ
J1.©.. T(n,.o
<j> o
o
I,,o
.,..I,'r
r r
-rTT
.
►
<
>
z
3
hir
<0
xQ*.
*
0)
PtftCf ■4P.' .u a
^ —
i- %
Ji o
O >
■r—■
r»
~ a "•;
O 0 3>J
f> ^ o
J- o t
» ■»"I1" I »
f*1f—*r
Pf -. -- A 'f
~L'■ 5 "’K.iF
>r.
p’
r.
i/k'J
m
?*T
- i.
I t
\
-nT.
> ’
;
r'>
it.C
c7
*-_Z
',p1
if
‘•3
?r
?P
1?o
y ?
»
5
X
*
M*
si
'■■:[
T
.AX
>/
PfA;Ttt!AGE CHANGE.
o
-*1
7!
pH
PERCENTAGE
C h a ^ j E.
( 1
*
^ “ r-OGOr'^
o,. OI.t>IlTl
6 0r \
Q^o
.o
,11O,'Ml
.IIH.I r -.T
PE R C E N T A G E
v>* >
*■p
r T3
CO
oo
00
r*>
« o
Ol’*r,
•»
J
11
3>
rf
CT>
C3
69
*JM
o
<✓
►
J
uJ
z
UJ
n.
u>
a
<
r
*u
<
<x
UJ
(—
.
.0
J
»o
•10
-50
4J
•Sc
-C®0
•»c
50
>o
o
-10
ui • 7 0
o
«=£ -30
rr -40
NA
-30
cZ
U-i -£0
PtACtMTAGl LOtb IM
BRtAKlHO ‘sTHEKOTK
FAER<C HO 7 A
k
>
t... \
<”* 1 0
ao
a>o 100
HOUR.5 ACCtLtHkTfP AGiKj
4*>
30
3
o
-kl
30
45
CrfO
O- “70
-8o
PEACE MT RC.E ’
.Ot>i> :m
>*tlAKtno (.HtlHiTK
P At>KiC
no 9 9
II ------I .. 14
II I. L..— I— db—
o
io
40
c*o
iOO
H O U R i o A C c t i E R » . i ( :.■
AS
30
15
— 'N
* — —M
a
o
O
-'5
<
t— -30
JZ
Uj
PERCENTAGE
LOt>5
IP
^JRbTiMO *)iR.tMGTH
-«S0
P A frA I C
--— ■A
JOH-*
H O ■7 A
.■--,i.
tZ>VK»j
O' “45
cZ
UJ -CfO
ca­ -is
-30
WHti iOOH.
AOCeiRTO
HATURM
2 4 VK-^
pe A c e m r o e
«SyR.*>HHC* *>TAtn<iTH
FRbAiC
O
O
T ime . a g ?:j
no
9P
■»■
^ t20Hr<* 40*.- * O O K n IOOH-liWKi
t i m e
a g i r
20 t.5 UJ
UJ
'
J
f.
«t
✓O.
05
OO
-0-5
C
■TL
ex.
C H R flO E
F A 6 ? R iC
ACCtwR’TP O
“T A T U f t A c O
i n pH
no 7 A
-
20Kc*
4 0 > l r j C.OH»* (OO Hr-v
24WK.4
i7 \* k.*>
T i ME A o e o
2-0
cw knot >h \>h
FABRIC
MO 9 P
W C U KTD O
ZO M r * 4 0 H m
HfcT >1,41 O
H W R 6
iOHM
ii.' ^ w
24W»4
TlMt
ACI D
%
U
0
T
<
T
5
o
0
t:
u
jr.
■A t
7 A
i. .
■v*.
A*Ctv.Rt tp 3
a.t 1R.A
‘"■O
;
2 fVlfj
m e '
*c.f r>
j
'-4 *■-
70
,o
O
-'
C
'
kA.' 1 V
,"
1
'I ■y-4G
r
v XC t" T
M U H
*«l.,
pa e>«.i•:
..—*
t’v -*>>'
Dr \fO
U- -1C
IH
pe
II 9
too
l.tKA'tU AO >
J.
k -0
RCim Aoe
i ot»*»
£>ARA*.lHO S1MN.TY
Eltt^tc
t> o
n%tr.i.. I >..
I'
Ic
40
l»* O ,.0o
■Sc
“ TH-fMc.TH
^ 0 :E -tR AXfc r,
45
to
y5
'i
< -l*>
K--
r
OP
2'
UJ
C • -4S.
Cl”
'1. ~(eO
r,_ -
•j
PC a c t IT AC-t LO!.^ ,4
-V
*
ic r*o. ^
.-A.- ,.-■*—
„i..— i. *
20 Ur •» 40Mf> iO«>t kOOH^*
iJ**».*k
a 4 YV t*V
ACC
Ilm o
HI
k
T_Kkt
M
T'Mt
4 G tP
o
w.
•>
- >I.f
c
- a rj a A
C « A,rv:.,f.
f -v ^ R i C
O H r%
r>H
n o
11
O
ktC»l RTO O
4 0 M * Y ^ 0 Hf> iOO^r'
J iY**
>
H AT KAL O
r ME ft«oIfi.’
ZOrt.-* 4 0 M m
i1 VVH<t»
ti me
ol
Aged
lOOh*.
24'VK6
O
r: 0 0
AS
X
tj
■
16
V
4
O oo
<
r: :I.
•
’
J^J
5p
'j
‘*1■A^jlr
al
UJ
II P
f
~r
■V. .t.
4o
O.
PC
\Y A ’ t .
«T A o t
R -
’ L ..» &
'..'HANOI
f fte>A iC MO ^
Al ( . 'O
MATt ■
*At
Firniro 21.
h
. ••■ -
7v"'rfr« 40 ■» i:v»r>
T 1ME * C ?
*M
Cj I K
?4-i*k4
71
to
I 0
0
PERCENTAGE.
-10
-10
Ui
-»o
o
- yo
-50
AO
~40
-SO
O
o'
<•0
-TO
-So
-10
P f.M C » M T M G (.
MBAKtHO
IH
KEHOTM
FADRtC HO A Dip
..I— ... *
O
20
AO
dO
tOO
H O U R S A C C T u C A A T t D A O IH O
-50
x A
• fco
-70
P l A C E N T A C t L O S S IM
-80
r k.CAM.tN6 i m m j T M
JL
O
noA PS k
- kSAtc
*
JO
4o
o»o too
H 0 UA.S
ACCEltAATCD
AG.HC,
45
SO
VS
PERCENTAGE
uj
<7
-<
HX
UJ
oL
UJ
N ATvJft. A '
%.O
pH CHANGE
-75
-90
20H k * 40M r * < i O H r » I O O H r * .
11 WKS
ACC E C AT D
HATUkAl
24 wks
Li 1- — A 1
>
1 11k
O
l O M * - * 40N r » f i o k r *
O
2 0 .
I.S
k 5
I O
0 5
■06
o
z;
<c
a:
O
-0 5
1.0
-x
- 10
06
oo
c h a n c e
F A f e R lC
A C C t I R ’T D O
■h
pH
M O f t p e *
J.
I7 WK.S
.
---- —
ACCCCKTO o
M ATOK AL O
t i m e
2 4 wk'»
A G t O
OO
-20
2 O H r * 4o i 47r a 0 H r » I O V h , ..
MATUAAu C
IO O U*--
* 4 * 1 (4
■
o_- I S
-15
l lw k k
T l M L
a g l d
Io
-
P E A C t N T A G E 1 0 6 6 tH
b U C S T l H C ftTAtriOTH
F A 6 M C
NO.SPS
2.0
-7 O
AGE CHANGE
-45
-<£0
NO S P D
T lM L
?’r RCF
-so
a .
P E R C E N T A G E L O S S IN
•bU R .*> T t M G S T R E N G T H
* Ae>R.lC
o
-IS
C H A N G E IH |»M
F A e>Rk c HO 6 P S
. ( I. ,X—
>
11
itWKk
Ac i d
time
a o e o
H
24*K4
ui
u
X"
<
JC
o
4.0
4 6
UJ
o.O
i.o
■r
V A TE A - 5 0 1 J f t l .* O
AT
(- r
a
.
OH.- •
'■v-
•>
w
A . «. t
'•
ir.ire
o O
. *
r*0 ^ v * ^
' C»
A.
J
V*
TV A T s
AC! D
•4
\vaa
►mt m a c . e LMAHGf
oH CHAHC't
r f RCtnTAOt
,
m
>•
2?"
OJp
C
>O
)
Jc-r
,T» -
pf RC'f rfTnC?
'J*"»
r O
?0'
f
»(J
i
J
»-Ef\anTAQE CHANGE.
K)
oo
-f.< v
S
!
<-jo
CO
go
<-0
oo
tfm
Z ^ rr,
?“?*sn»
5J3
0 52
..P *
»
XX
*o
*x
73
\0
0
-\o
20
O
~50
►x. -40
u_>
o -50
<*
u_<
o_ -70
-8c
-70
tf4.tAW.ilHG 9T4E.MOTM
*a *»«u «; no saI
o
< 3 )0
too
HCTOB.O At CtS.€0«ATlO A G IMu
44 '
»■
PtMTtttTACit l O^tw
r AlAKlfOO
**»(*. .C* N O £ 1
30
40
UO
O
HOOKi ACCC ItAAtCC
Ai>
I*
45
7>0
V5
UJ
O
-I*
-C
-*o
-45
o'. -40
■■■> *
.*>*
i.
? ■ ..
lai.xn
o
■- '> J * . .3
R * r » t '• H G
* > U
I H
-75
-*0
61h
.4
?OHrt 4 04'* (jOHtl tOC Hi-s
i; w<*
1 ’M -
f > f * 4 C t m A & t VO**> »H
bl/AM'tlG ftTAlNQTM
FikbMC HO ^ 3
ACCtlfcTO O
HMUfcAi. O
24V*-
1
*
T iwt
4 _>F '_>
w
2 0 4 ^ 40»*-» COM^lOOUr'k
i*V»i%
a4 wit.4
A o e c>
41..'
•J
X
«■
•;s:
o
"T
a
xccnuvtcG
*,
:ot(c\ 4*~v4»> c,OHr* ioowi,*
24iv#.*>
r;m f ACj f C---
Act»r w o O
2om.* 4ohh c,.-: H ., i 'lO *.
H A T > 4 1 «J
T ' . MS
t \V K4
AG CD
-/4 -sVK.^
4
O
^
oJ
'-U
i
W'
>?
p£ 4 C t
’ A -..,;
*
r
n * r-K >
vvtK"r" >. •(*,.• »• ’H‘
r
- o 5t
r*rt*
A..?
*
M »-
Aa.t M
»tii O
M A.TU*4 4V.
24
_r
2N «•>
vs A<jec-
nr
2 a *»*<
74
io
t0
o
PtRCEfHAGL
-10
-iO
-to
->o
ul
o
•1 0
-> 0
-4 o
<J - s o
40
-8o
-<K>
%A
oi l i o
-10
-7 0
c'E.A.CKMTAGl. uO***>IH
WUAKlHG 6TO>tl7CTM
FABRIC HO *^9
80
o
lO
AO
OO
P tR C tH T A G €
r
-Bo
IOO
4
20
40
<*0
rtOUAO A C C ti£*< M tn
HOiJRft ACCtl.ER.ATtO AGING
P E R C t M T.Vo*
*»
*o
o
Ui
(?
- i*5
40
AS
L O i >6 t M
A.*A*MWG bTAtlKTU
A^RlC 140.^4
\oo
A* j i h ^
45
*>0
l5
0
-I 6
-bo
<U -45
-Oo
76
*50
F E a . C E n r AGE. ^.0E?*> l*i
o£
uJ
O-
Ai’R.*!THC 51AIMOTH
•= A£>RiC MF £3
■1
■ . -l . i .
:OH-* 40Xr* OOHrk 100 H*"
IZ TWK5
24 V KS
r - M E \ ~j E O
ACCEL ATP 0
M AT J FLA . O
•C o b
-"5
-SO
PlAClNTA&l A 056
»H
bU A 5 UHG 6TA1H61H
PAbHlC
ACCetATD
WATUAAl
o
o
MO. b 4 1.. — ...mJL
Si>H^40»k» flOHf*
iXW«%
24WN6
Tl M t A c e o
v'HAflOt
•2 o
05
oo
oH
tX
CHAnOE !M pH
FA£?RIC M0 88
Z O R r * 4 0 H > * WOHrj l O O H r t
i i- WAS
M £ AG £D
CHANCE IM
2.0
F AeiR.ic n o *4-
ACttVATO O
H ATOK.AI O
I4WK5
2 0 Wt%
t ime
II W N
iiO*rk IrtOM
A gio
J4VH6
u-0
-4 5
-A O
*■"
• •{knoi
ACCE. R' TCO
,
'IATUA.Ai. o
-
A
W A 7’ H.-T50 I v.*> -c
v>
11.
* *-
k ^0M
.'<^
v..j»c;
*
■4A f }P
t
r*
f>
i'
f
V P. A. c.. f ;
:<i .v*
.* Change
PERCENTAGE CHANGE
J>
r
O
o *r o \j\
oo
PERCENTAGL
PERCENTAGE
Q - ' *0
o
o
vji
DO
-nr
>x
pn
7?
n r"
p
i7>r
c g
\l»no
Jtf
5X
ftz
z*
x
I
•J
r
n
o
0
PERCENTAGE CHANGE
2>
01
f* * V
> ~ o •
o w1 o
o
O
=i .
uo T i ^
P*
r - -P
jPfti
k
K\
\
\
\
\
/
/
/
>
X
r **
I_*
3C0
Kix> 0(J!ri
>*r
c;
r*
0
M
A
<
A
vaV0 ,i
>
7*2
•C
t»•
JJ.
t
^
o
PH
II KJ
-i»
h AN-
~ C G
"T*
,f
PERCENTAGE
PERCENTAGE
<30
~
i ....
o
<
-0!
&
CO
A1 No TtO
- X
*
m _ ; *;
fJ-A.L?o
01*
i
f**
O*
’
p
a r
u
X
n3 £
<&
>1
' K0
t*U
C*
t
»A
o? U
O o
£5 o ©
76
O
O
pl K C r ^ \ Q l
-lO
-lO
UJ
-10
7.0
-
O
•a:
30
-4 0
-30
<C
o£ Xp O
-70
•'ERCINTfCt .0*1% IH
&REA*..rtG
FA3«.tC
o
MPErtOlH
Ho 3ft
AO
ACCELERATED
6 t
C A 6 AiC
. /'--r.
.
n o 3 ^
o
ic
40
u><■
.>■■
HOUTCi> A*. €lt«.ATk_i A j -
20
HC-JA3
PE A C I H u
-8o
AOIMC j
45
>o
30
i5
rfRCLMTAGt
<5
◦
—(l*
UJ
o
o
•<
-15
40
-30
15
-45
O
oC
UJ
£#0
-7*.
PER.C EMTAGE.
uO bi
.H
%JR.^>T 1MG y k E H O T H
>0
Cl . - 7 5
-*0
F A& M .
HO ^ 6
-4.
JL
■i.
J.
20 H r * 4 0 Hr* GO Hr* lOO W
ACC E C AT O o
TIME.
-<Z>0
AOCEl'ATD
HATUAAl
PeRCE M1 AC*C
,H
AUA3T INC -UTAfMCiTM
FAt>R»c tno-39
i
*
^ - —A O
O
2O H * - » 4 0 »l^ li<5A»* l O O H , *
\
2 A^tl-S
T• MI
A J L J
AGt o
0 5 '
05
o o »
OO
-05*
pH
■•'An- >
20
a_
ACCELATDO
P£RCtt1TAGf
CHA nQi
HATJAAl o
C H K n ot
<n
FA foR iC
H O > 6
r>H
P A e n i c wo 3 5
20Hr* 40 Ht» {.(OHr* lOO Hr
AtCl t RTCJ O
H Af.'RAl O
12 \ V K 4
time a ged
TIME
ui
o
ar
<t
.r
^ o
4 5
»
■j
*.0
UJ
O
<f
-1.5
4 S
<* o
K C I^T O
ivr A. Ac
o o
*.-
^r
PERCENTAGE CHAnGl ifl
VAT€A-*>Olue»l.E ,NT7C<X.IH
VA & A . C n o 3 f t
H
J
L
.
c
2Jr\rw 40 > (JO lOOWr-«fc
c
Z vV*•>
2-4»VKr>
r M E
A G E. CC
_':ur
AC(D
4 5
-i 5
.VO
U O H r t tO. »
40
-60
-bo
o O
2flMr*
z:
■j.‘
■—t
oc
i6
bO
4 5
<•©
PEACE HTAtefT CTh An ,f
f AfcAiC M O 3®
W A7 * n.-*>oli.'&'ie n >T"-1. c,i~
J_
40 M- * Op ?
ACC l l A U J o
rlAYURAC a
27
:TVk%
’H V E
A C f-
** •>
PEftCENTAGE
PU CwAflCE
C L U 1 0 1 T v' CMAHG&
I
(
kj —
- -J- NJ
momS
Mm
Cr T6 T(A o^io
iirri t r
tl> M r - O O O
-r?°
»n
C V) ^
^
Oo
^ o
6P r r fit"
-t t t t
8
s
o°
OO
M
r<7
-5
j>x
/
n*
K» •nO
z!I o
£ ? i?5
h» *
1-
>Bo
?0
r*
PERCENTAGE.
i1
?c
02
S’S'
o s
oi
0
-t
r
o
N
'
X
r\
1
Of
_ Fvr
•*
0** § 3
o
J
ig
*o
s’
•u
L-i
CD
QtflC^OWQ^o
PERCENTAGE
p*J. CHANGE
F luidity -CM ANGE.
££
’
« “ - ooOrrW
o^ovnovROwo
T
T
i
f
i
i
PERCENTAGE
■
I a. < I
1 •
I
o O o o o o o 000
c
J5.
F*
?0
00
r*
cO
i
77
78
C
-io
io
u<
-'2 0
«-C
*>C
/
*G
•\.jO
u
' c. RC c h r a . t
l. o
f* b R l C
I7
■ D
-a
bfLEAKLHG *3Tf>.trOTn
HO.
„
AO
2a
.’«-H
PFRC
uJ
*
—
. . - A
io
—
-
■ ii.
4 >
S V
a
. . . —
of'
HOV'-'i <Gt€
A5
.A .
oo
;■/ AC.'H
5
K
--s
A
- 15
ti
r
n.
>
«••;
*5
J
A m .
■*>o
FERC* H-TACfc iOi> 1M
rA.e>a \c m o I£
v—
T. GO
50
U.'
-AS
G -45
o' -(eO
MJ
O- - 15
-pO
*>0Ro T■H».j
HO
F AftR i/
>
'H-EHG1H
17
*■■■
icctJf».TC
“■Arjfta ;
!OH>-*
j
i
H5TUHU
r.4v'K-.
I d * !
»M
»h o » t m n o : h
f a e» r i c n o . i &
ACCClRrO O
OH o lOC Hr-
i2. X> K*>
T : Mf
P (H C C N 'A & f
GO
O
*-*
t
70 Mr*. 4 0 Mf« fiOH*-* lOO W*->
Ti W t
,v...i:
11W»*
AGtO
•;4 w 4*i
2.'.'
"h APICc
k,
,
0
06
>0
> *-
IO
£
05
oO
(j -0-5
-x
i
a.
•..
KAvMGE. ' pH
F A£>R 1C
—
►v-'CEltC’D O
UJ
•'A,ofcA\. o
A..
,
,,>■
tawKp
no
Id
AAttl' »TO 0
2<i!vo,
MAT.'KAl 0
a g e d
20 Mr* 4 0 Hr* GOMrt . O t J H m
awiti.
T IM €
AGKO
24WK5.
nANC*
i m e
F A fcR IC
i_____
20Hr* 4GHr>(jiOH*fc ,00 lin
T
CHANGE IH v-M
-7 O
MO I 7
H
JO
ACCEL •»TC
►•ATj AAl
u
C 1-.\HG
c A K>S •C
FAs*>AiC
20 Hrw 4c■*.> tfO«>
i
•M E
.h.*>
A G E D
»
0O*
4r>
*1
\V A *■>
A C (i L A T p
0
HM'.AAi. c.
-
*
»'0 »• -v *10 W> » (iOrt • ■ 0' ' H
2f*<5
F v*.E
ACID
pH
F w'J! r iT r"•C h AfiGE
»0- —
chance
i ♦
—r O o o -
*
'ilk,
o
p ercen tage
PERCENTAGE
- i0
is z $ % z i $ i
Q ^oO'O^o
T
t-t
T
/
~nO
V?5
,-
•ntyrj
n>
2?-
> >
?0
r>r"
85
*1
0
f lu ii h t v *c h a n g e
C4
o
$
1
o
oo • TlF'
;5
- ?c>
? i n">
m _1
'C5
■
***
£*;
0 g
I
W*
*o
*-
.
PC
?
-»
<
,
1
1
«
>
~
i T
J?
PERCENTAGE
' I si. ' 1 '
o o o o o o o O ° ^
PERCENTAGE
rH CHANGE
,
C ^ O iftow O
» T . ■j — -r r— T t
r «
I I
7i
* -i O G O ~ ~
> o -y-r
> o ‘T'“T
^o
O ^ ■■ T--T-
—■
’ c r. -!— r—r
” 5*
>
r- 0
00
CO
A a ■nO
— i
**»_ J
N*
?<*
*5
?o
pf*
255;
o
eV
X
Mr
I
»
210
pH**
N3vr
-4—
ie
*
»
f!
Aj_
13
*t
<0
CHANGE
* 1 -L *
o ^ 0 ui o <■»>©
pH
^o
PERCENTAGE
CHANGE
*
*- r (
oftoo o -o-^
©*XiO
r
I
i r'TT
PERCENTAGE
-|02
F L O' L>>T Y
fT_
I
r*£0
»
»
??
i
II
F l u i d i t y 'CHANGE.
_
iv
a
Ut ft
PERCENTAGE
o
ifJ CHANCE
1 » • •
T .. N
^ : : 6 o o ' ;
o ^ oT t
n o u■■■■o!' ■^,—
'T 1 T
PERCENTAGE
•
T>
102
H
!*>
01
0 0 0 OG>0
oo
-i
»
*o
SO
,£
t
*A
*■j
O *’
■- J o
vr-
o
T T-T"
-T —
-t
I
Oi» B-.IM Kl
■' :r. c ^ o 'Jl O
r
r-?
r>
x
•' )
r* 0
c
*.. r
5?
J^X
>?
0
it
A,*V
i
- - Is)
*»
4<
*•» 0 * ^ ’
J> 0 w.
* 0
o
i f ! ?
*’
>!
" <3
i
t>- ~?.•
T® :
J
r
e
♦ ;*|-
►.}
c>
**
*< fm
-
:l
-r-
— fO
I*
■r
c .
r 1
-j C- 4fc v"
0
o Ui a 'Ji
i
- o p01 G 01 C U1
CO
-h
N
a
-
X
2
m
J
n
>*
n
rJ-ik. ? 0
C 'l*
* (
- ht
o
'X
?n Ct T1TAGE
i v1
j * < 1 * i
oo<o O
—i
o oy>o> o> o O o o-
O
S.
O
O'
Pfc R.CPNTAC
S#i
\-o «2
X
Nj
»
tjr•
'
*
t
hoi
■n
—
C t‘
w
S.MA1I.
L,
M
0J
r O
«•■**• pf
&
r« £
'V'K/lt-Z
-;
i U
.
r>n»
n" J
^ *;
i t *c
t.> '» ;
?D
? x ‘0
tVani'IH
2 ?
r* *
► 7.
P ?
-r ►r'
>*
CP?
o oiw.ua?>*-''•h o c 1
1
n *-*>>or5 ‘— not-
v
£ ££
T— l" I" T ■ 11"" t T "T**1
*u h c ?
r,fY
r*i>
PERCEMAGL
PERCt*'rAGt
r>H
•—i —< c c
p
jy
i- m•
\,1
<o
O1
11
lr
s*
CD
H
82
D I S C U S S I O N
0 F
F I IT D I IT G- S
C PITST R U C T I O IT OF FABRICS
Pare Dye Sil k
The c o n s t r u c t i o n of tlie fabrics said to be pure dye
sill: by tlie producer, w h i c h were used in Part I of this
study,
as sliov/n in T a bl e I, might b e summarized as follows:
V;eight of Fabrics .
which, w e r e used,
the w e i g h t per square yard varied f r o m 1.27
ounces to 2.95 ounces.
of dress fabrics
Weave
Of the six pure dye silk fabrics
In short,
of light a n d m e d i u m weight.
of F a b r i c s .
F our of the fabrics were of a pla in
weave and two of a s a t i n weavej
and one a five
they came within the range
one was an eight-shaft satin,
shaft-satin.
Thread Count of F a b r i c s .
The numb e r of threads u s e d in
the warp d i r e c t i o n of the fabrics r a n g e d from lb5 to 208 in
the plain w o v e n f a b r i c s and f r o m 2G5 to 440 in the s a ti n
woven fabrics.
In the filling d i r ect ion the number of
threads ranged f r o m 83 to 118.
The satin fabrics as w ell as
the others, w e r e w i t h i n this range.
In short,
the fabrics
were all w i t h i n the thre a d count value expected for their
weight range.
Ilon-fibrous Material i n Fabrics .
The percentage of non-
83
fibrous m a t e r i a l or* w e i g h t i n g
from S . 51 per cent,
this range
found in the fabrics r a n g e d
to 14.73 per cent.
Is but a little h i g h e r than the amount allowed
(10 p e r cent.)
for weighting in silk,
Federal Trade C o m i s s i o n rulings
fabrics.
The upper Iknlt of
a c c o r d i n g to the
on the w e i g h t i n g s
of silk
It Is sufficiently high, p e r c e n t a g e to class two of
the fabrics as s l i g h t l y h i g h e r In n o n - f lbrous m a t e r i a l t han
Is allowable legally.
Y a r n Construct ion of F a b r i c s .
yarns u s e d in the pure
The struc ture
dye silk fabrics Is the following.
Four of the six fabrics w e r e w o v e n w ith the
yarns,
filling as 2S-22
a char a c t e r i s t i c con s t r u c t i o n of s i l k crepe fabrics.
The number of twists
per i n c h was 65-5 r e g a r d l e s s
r e c t i o n of the twist.
The warp yarns
k n o w n as n a t u ral twist,
just a sufficient
One fabric
filling.
The twist
other silk crepes.
or three
of the d i ­
c o n t a i n e d only what Is
to five twists per Inch,
amount to hold, the filaments
weaving.
twist.
of the
together for
was a r o u g h crepe w o v e n CS-GZ in the
in these yarns was the
The warp y a m s
The sixth pure
w o v e n with 2S-2Z yarns
same as in the
c o n tai ned o n l y natural
dye silk fabric was a geo rgette crepe
in b o t h directions.
These yarns all
c o n tained approximate-ly the sane number of twists,
70.7^0.4
per inch.
All except one of the fabrics
yarn in the warp y a m s ;
c o n t ained two threads per
the one exception c o n t a i n e d three
84
tlireads.
In the f i l l i n g direction,
three fabrics co n t a i n e d
yarns with, two t h r e a d s ; two fabrics contained yarns with
tirrcc threads;
one fabri c contained a y a r n with, five threads.
The yarns contained, from 13 to 35 filaments per y a r n in
the warp d i r e c t i o n and from 26 to 77 filaments per y a r n in
the filD.ing direction,
X?er yarn.
This
depending u p o n the number of threads
gave an average of 11 to 12 filaments per
thread in the w a r p d i r e c t i o n and f r o m 13 to 14 filaments per
thread in the f i l l i n g direction.
One of the
b o t h directions;
tions;
fabrics was made w i t h 13/15 denier silh in
one, v/ith 20/22 denier silk In bot h d i r e c ­
and tixree, w i t h it/15 denier silk in the warp d i r e c ­
tion and 20/22 denier silk In the filling direction.
siuth fabric
contained a
20/22 denier silk i n the
15/17 denier silk in the warp
The
and
filling direction.
Fabric n u mber 1 1 -D was a fabric w h i c h differed from a n y
of tlie others I n that
cupramm onium rayon.
It
was composed of pure dye silk
and
It was grouped wit h the silk fabrics in
this study because it mor e nearly r e s e m b l e d this group of
fabrics In appearance
and construction.
It was constructed
similarly to pure dye silk fabric n u mber 9-D.
The weigh t per
square yard and the thread count fell w i thin the range for
the other silk fabrics.
The amount
of non-fibrous material
present in this f a bric was much lower than the amount u s e d
85
in tlie p u r e
twist
dye
silks.
in tlie y a m s
c o n tained o n l y natural
of both d irections.
tained two t h r e a d s
per thread.
Tlie fabr i c
of 13/15 d e n i e r
ihe warp y a r n c o n ­
silk,
with 1 2 . 5 filament;
Tlie f i l l i n g r a y o n yarn, was a single t h r e a d of
97 denier w i t h G5 filaments p e r yarn.
Ae iglited S ilk Fabri c:
The wci ghte d silk fairies
consisted, of a group
/lie c o n s t r u e tion of w h i c h n a y ho
':.fci.yvt of Fabrics .
gu_.l
.arise d as follows.
The weight per square y a r d of the
weighted, silk fab r i c s "varied fron 2. I S ounces
leave
weave,
of F a b r i c s .
three w e r e
S i ght o f the
five-shaft
satin,
a diagram of w h i c h lias b e e n g i v e n
T h r e a d Count
of Fabrics.
The
yarns o f tlie p l a i n weave w e i g h t e d
152 to 176,
per inch.
The thr e a d count
to 4.49 ounces.
fabrics w e r e
satin,
on page 27.
thread count
for the warn
silk fabrics v a r i e d f rom
f r o m 69 to 97 threads
for the s a tin weave
variation,
of a plain
one was e i g h t - s h a f t
and for the f illing yarns,
showed c o n s i d e r a b l e
of 15,
fabrics
r a n g i n g f r o m 272 to 480 yarns
per i n c h i n the warp; direction ancl from 7 5 to 111 yarns
per
inch in tiio filling direction.
ion-fib r o u s
laterial
in fabrics.
All
of tlie woiglh ed
86
fabrics could be cla s s e d as hea v i l y weighted.
Two fabrics
contained approximately 46 per* cent, of non-fibrous material,
v/itli all others more than 50 per cent.
were
Two of the latter
65.IS and 66.15, respectively.
Yarn G onstruetion of F a b r i c s .
All of the fabrics u s e d
in the v/cightod sill: group contained v/arp yarns with, o n l y a
natural
the
twist,
and all except one of the fabrics contained
c o m o n 2S-2Z arrangement
amount
in the filling y a r n s .
of twist in the filling y a m s
amount from fabric to fabric,
7 2.3 turns per inch,
The
varied a considerable
trie range b e i n g from 56.5
to
but the S and Z yarns used in the came
fabric did not vary note than five turns per inch.
shews a relatively u n i f o r m fabric construction.
fabri c , not of the 2S-2Z type,
This
The one
contained only £ yarns in the
Filling; direction, w h i c h had an average twist of 42.2 turns
per inch.
five of tire fabrics wore made
from warns c o n t aining one
‘
*
tInroad in the v/arp y a r n and two threads in the filling yarn;
seven contained tv/o threads per yarn in b o t h warp and filling
y a r n e ; and one fabri c contained tv/o threads per warn yarn
a ad. four threads per filling yarn.
On the average,
bo tin tlie
w ar p and the filling yarns contained 12 filaments per thread.
In twelve cases,
" lie;
the yarns were constricted of 15/15 denier
in five cases,
of 20/22 denier sill:; in nine
casco
an in-between v/cijhi of sill:, apparently a 16/18 denier.
of
87
R a y o n Fabrics
ilio nine rayonc used in this part of tlio study were
divided acc o r d i n g to type of rayon,
cellulose ace t a t e rayon;
as follows:
two w ere of
three were of viscose rayon;
and
four were of a corilination of cellulose acetate and viscose
rayons.
This javc a wide
as fiber content
selection of r a y o n types insofar
is concerned.
V/eijlat o f fabrics .
The welyht per square yard of these
fabrics ran q e d fr*on 2.G9 to G.04 ounces.
heavo
of ? a brle s .
Sin of the fabrics were of a p l a i n
weave;
0110 was a five-shaft satin;
satin;
and one was a. twill weave.
flare a d Count of fabrics .
The
one was an eiyht-sliaf t
tlir oad count varied from.
46 to 328 tlire ads p e r inch in tire war p direction.
count was
found in a
The low
fabric constructed of a four- tlxread'
novelty yarn,
and Hue hlqii count was found in the elqht-
chaft satin.
In the filllnq direction,
ran; ,ed fror.i 42 to 'Kk threads per inch.
was found in the
the thread count
The low count ayain
fabric constructed w i t h the novelty yarn.
ion - f Porous h a t e rials
in fabrics .
ho weiyhtiin; or non-
fibrous m a t e r i a l ncasv r o n o n t s wore uade on the rayon fabrics,
since they v;ore hnov/n not to have boon wciylitod or h eavily
lro s c od in m a n u f a ciur e .
38
Y a r n C o n s t r u c t i o n of Fab r i c s .
tained £ t w i s t e d yarns
F o u r of* the fabrics
in b o t h d i r e c t i o n s .
Two
con­
of these
contained a p p r o x i m a t e l y th.e sane numhe r of turns p e r inch in
b o t h warp a n d f i l l i n g yarns,
in the w a r p
yarns.
yarns,
but
and
two c ontained a h i g h twist
only n a t u r a l twist
in the F i l l i n g
Tliree of the fabrics had. only n a t u r a l S twist
in tho
warp direction, a n d 2 S - 2 Z c o n s t r u c t i o n in the F i l l i n g d i r e c ­
tion w i t h a p p r o x i m a t e l y the s a n e nuufoer oF turns
both £ a n d Z yarns.
twist in b o t h w a r p
One fabric
per inc h in
contained, o n l y n a t u r a l S
and filling y a r n s
and one
fabric was
con­
structed of c o m p l e x y a rns F o r v/hlch a. d i a g r a m is g i v e n on
page
30.
All
of the r a y o n Fabrics w e r e u a d e
except the
the yarns
one n o v e l t y y a r n Fabric.
of s i n g l e ply yarns
The f i l a m e n t
count of
r a n g e d f r o m 20 to 40 f i l a m e n t s p c r y a r n in tho w arp
direction;
a n d all c o n t a i n e d a b o u t 4 0 F i l a m e n t s p e r y a r n in
the filling direction.
The
d e ni e r of the r a y o n y a r n s "varied f r o m 67 to 144 in
the warp dire c t i o n ,
tion.
a n d From 102 to 1 7 S in the f i l l i n g d i r e c ­
The n o v e l t y fabric ^avc m u c h h i g h e r d e n i e r
because
the d e n i e r was m e a s u r e d
for tho whole
readings,
yarn,
and not
the threads w i t h i n the yarn.
The c o n s t r u c t i o n s
part of the
study,
of the Fabrics
in the
sill: as w e l l
as d e s c r i b e d For this
as the r a y o n field,
show c l e a r l y the wide v a r i e t y of Faeries w h i c h were used;
89
tais n a y a c c o u n t for
a one
of the
differences
f o und in the
c!ie;nical a n d p h y s i c a l ncasure.^ents m a d e o n the i m a g e d and
a g e d fabrics.
KKSuLTS
Of P E S T S
Oh A D H D FABRICS
As lias b e e n m e n t i o n e d in the
PR j
TAT 10Lr OP D A T A , the
s e c t i o n of tlie r e p o r t
findings
on the
factors
ing; s trencth, burstin;j strength,
pH,
(of s ilk f a b r i c s ) , a n d -viscosity
(of c e l lulose
b e e n given in Bab i e s
factors
PI to VI.
have b e e n graphed,
In these figures,
The first gr oup
as
Also,
c o m b i n e d In one g r a p h
group
(Figures
tests
on the
second,
nave
tire data on these
3 to 32.
of F i g u r e s b r i n g t o g e t h e r the f i n d i n g s for
tent,
one type
fabrics)
of g r a p h i n g have b e e n f o l l o w e d
e a c h s e p a r a t e test for* e ach fab r i c
visualise
of b r e a k ­
water*-soluble n i t r o g e n
ex p l a in e d in Pigures
tv/o met h o d s
on
of one type of fiber
(figure 5 to 17);
13 to 32 ) shov; the r e s u l t s
separate
fabrics.
Thus,
the c o m p a r a t i v e p e r f o r m a n c e ,
of fiber
content
of one f a b r i c
the
con­
second
of all of the
it is p o s s i b l e
first,
on t h e d i f f e r e n t
to
of f a b r i c s
tests,
and,
to all test s .
Breaking; S t r e n g t h R e s u l t s
Pure Dye SI 11: Pabr ics .
percentage
rics.
loss
In b r e a k i n g
In tills f i g u r e
f i g u r e 3, page
s t r e n g t h of p u r e
tlio eff e c t
51, shows
the
dye si lie fab
of tlie a c c e l e r a t e d aging
of
90
test on tlie s t r e n g t h of this
trated.
In all cases
continual loss
limits
except Fabric N u m b e r 1,
b o t h w h e n the fabrics were t e s t e d in a
dry and in a wet condition.
just m e n t i o n e d ,
In all cases except that
fact,
of the
an increase in the length, of time of
accelerated a j inj a f t e r 40 hours
abrupt losses
there wa s a
in b r e a k i n g s t r e n g t h with, tine, up to the time
of the test,
fabric
specific k i n d of fiber* is i l l u s ­
of exposure p r o d u c e d more
t h a n w e r e s h o w n In a s h o r t e r aging period.
a slight
In
inc r e a s e in s t r e n g t h was s h o w n by two of the
fabrics at the 4 0 - h o u r p e r i o d of exposure
tlie 20-hour period,
a n d no fabric
the 40-hour period,
p a r t i c u l a r l y w h e n the
as c o m p a r e d w i t h
showed g r e a t losses up to
fabric was in the
dry con d 1 1 1o n .
7/hen the f a b r i c was t e s t e d in the wet condition,
losses
in s t r e n g t h w e r e c o n s i s t e n t l y greater than w h e n
tests were m a d e
similar to those
7/ei^hted s i l k fabrics
for pure dye silks,
breaking" s t r e n g t h a f ter a c c e l e r a t e d aping,
Pijure 4.
All
Humber 20)
showed a decrease
40 hours
except
one
fabric
in this
w ith r e s p e c t to
c a tegory
(Fabric
s t r e n g t h after
Fabric I/ur.ibcr 29 lost
of aging,
but did net show further
In s t r e n g t h on long ex* a_ing.
silk fabrics
showed
as nay be s e e n in
In dry b r e a k i n g
of a c c e l e r a t e d aging.
s trength after 40 hours
losses
the
on dry specimens.
7/g Ig h b e d S 1 Ik Fabrics .
results
the
All
of the w e i g h t e d
showed a loss in wet b r e a k i n g s t r e n g t h a f t e r 40
91
hours ac c e l e r a t e d a g l n (>
Fabr i c Humber 29 showed an Increase
In strength after 40 liours aging as compared with. 20 hours
aging, but showed a consid e r a b l e
er aging.
loss in s t r e n g t h after l o n g ­
It is interesting to n o t e
fabrics showed greater
losses
broken in a wet condition,
that,
on the whole,
the
in breaking s t r e n g t h w h e n
as was the case w i t h the pure dye
sill: fabrics.
Rayons Fabrics.
there was
hours,
Except for Fabric Furnber 18,
sufficient ma t e r i a l
to age
the sample only for 20
all of the r a y o n fabrics s h o w e d losses
ing s t r e n g t h a f t e r they were
See Fig u r e 5.
in dry b r e a k ­
s u b j e c t e d to the a c c e l e r a t e d
aging treatment, no m a t t e r what the
period was.
of w h i c h
l e n g t h of the aging
I n two cases,
the losses were
slightly less at the end of the 4 0 - h o u r than at the end of
the 2 0 -hour period,
cases.
a l t h o u g h this w a s not true
‘
f hooe f a b r i c s w h i c h w e r e
in the other
s u b j e c t e d to extended
periods of a'jir.g sriowed i n c r e a s i n g l y greater losses.
When
the fabrics were t e s t e d for b r e a k i n g s t rength w h e n ’.vet, the
losses w ere g e n e r a l l y greater than i n the dry condition,
and
were gene rally more severe before t h a n after the 40-hour
period.
An exc e p t i o n was found in the case of Fabric 24D,
which i n c r ea s e d slightly in s t r e n g t h up to 40 hours and fell
off after that oeriod.
92
Bn.rstin.fi Strength. r
i'ests
Pur* e Dye Silk Fabric s .
Pure ciye sills fabrics,
subjected to tlie burs tine str e n g t h test,
show e d losses
lar to those snovm in the case of b r e a k i n g strength,
general,
a S -idy be s e e n in F igures
when
G and 7.
simi­
in
All of the
fabrics except two s h o w e d loss e s in d r y b u r s t i n g strength,
after* 40 liours a c c e l e r a t e d aging,
show losses at the
fabrics
a l t h o u g h sone failed to
earlier a g i n g period.
One of* these two
(Fabric Humber 5 D ) showed a slight g a i n in bursting
a fter 60 hours
of aging,
loss in dry b u r s t i n g
out on longer aging again showed a
strength.
The other
(Fabric Humber 7 A )
showed a g r a d u a l increase i n dry b u r s t i n g
strength w h e n s u b ­
jected to the a c c e l e r a t e d a g i n g treatment,
h our period,
bait the test was not c a r r i e d
t h r o u g h the
60-
further b e c ause of
a lack of fabric.
The r e s u l t s
of the dry bxtrsting s t r e n g t h test applied
to n a t u r a l l y aged p ure
dye sill: samples
aging tests h a d also b e e n run,
on w h i c h artificial
showed that all
of the samples,
except fabric Ilumber 7 A loot s t rength after 12 weel-ss of
natural aging.
The latter had gain e d
celerated aging test.
fabrics showed losses
A f ter 24 weeks
in str e n g t h .
strength after the ac ­
of aging,
all of the
Hue f a c t that fabric
did not show a loss in s t r e n g t h after 12 weeks
of n a t u r a l
aging,
of n a t u r a l
but did s h o w such a loss after 24 weeks
aging w o u l d sug g e s t that the sane
fabric might
7A
lose strength
93
after a r t i ficial aging if it v/ere subjec ted to long e r periods
of treatment.
The losses
i n strength, r e s u l t i n g f r o m n a t u r a l aging of
pure dye silk fabrics have been compar ed with, the
ing losses
in s t r e n g t h f r o m a c c e l e r a t e d aging.
correspond­
The p u r pose
of this c o m p a r i s o n was to determine the length of time
n e c e s s a r y to subject a fabric
ment,
to the a c c e l e r a t e d a g i n g
treat­
if this were to simulate n a t u r a l a g ing insofar as
bursting s t r e n g t h losses are concerned.
(Table VII)
The following table
s u m m arizes these comparisons:
TABLE VII
••nJT.IBEk OB H O U RS 01 A C C E L E R A T E D AG Ilia Oh PURE DYE
Slid: P ABB ICS CO M P A R A B L E TO S P E C I F I E D PEPTOD OF
IIATUPAL AG1IIG (DrHT~BUB ST IPG STREUGPTEI
(TJjct'raoo1 a ting f rom curves )
Fabric
Humber
H o u r s of A c c e l e r a t e d
A g i n g C o m p ara ble to 12
k e eks of natural Aging
O
GO hours
> S 0 hours
5D
30 hours
90 hours
7A
55 hours
> SO hours
9D
30 hours
> SO hours
11D
0 hours
GO hours
These r e s u l t s
would have
indicate
Hours o i A c c e l e r a t e d
A g i n g Comparable to 24
P e e k s of n a t u r a l A g ing
that a pure
dye sillc f a b r i c
to be su b j e c t e d to a m i n i m u m of 60 ho urs
of a c ­
celerated aging to obtain re cults w h i c h would, cho w the
94
grc ates t amount
of d e t e r i o r a t i o n w h ic h w o u l d b e like l y to
occ-ur during 12
weeks
fabrics tested,
test.
of natura l aging,
under the c o n d i t i o n s
as
judged f rom the
of the n a t u r a l aging
.Also, it indicates t hat a fabric woul d n e e d to be
s u b j e c t e d to a m i n i m u m of 100 liours of a c c e l e r a t e d aging to
o b t a i n results w h i c h w o uld
show the greatest amount
of d e t e r ­
i o r ation w h ich w o u l d be l i k e l y to occur during 24 weeks of
na t ural u g i n g .
'.'/hen the p u r e dye s i l k samples were s u b j e c t e d to the
wet b u r s t i n g s t r e n g t h test,
ples
all of the a c c e l e r a t e d aged s a m ­
except F a b r i c Humber 51 lost s t r ength from, the b e g i nning
of the test period.
This
exceptional sample h a d g a i n e d
s t r e n g t h at the
end of a 6 0 -hour aging
longer a g i n g
showed a loss
it
n a t u r a l l y aged samples
treatment,
in wet strength.
A ll of the
showe d losses i n v/et b u r s t i n g
s t r e n g t h during 12 and 24 weeks
A c o m p a r i s o n of the losses
of n a t u r a l aging,
respectively,
in w et b u r s t i n g strength of a c ­
c e l e r a t e d and n a t u r a l l y aged
samples,
s i m ilar to that shown
for dry bursting s t r e n g t h is given in Table VIII,
follows:
but on
which
95
T A BL E VIII
IFUT.IBE R OF H O U R S OF A C C E L E R A T E D A G I N G ON PURE DYE
SILK F A B RICS GOLIPARABLE TO S P E C I F I E D PERIOD OP“
N A T U R A L A G I N G (WET B U R S T I N G S T R E N G W )
Hours of A c c e l e r a t e d
A g ing Cor.ipara.ble to 12
Weeks of N a t ural Aging
Fabric
Humber
Hours of A c c e l e r a t e d
A g i n g Comparable to 24
W e e k s of N a t ur al Aging
2
GO hours
>60 hours
5D
70 hours
90 hours
7A
60 h o urs
>60 hours
9D
>50 hours
>50 hours
11D
25 hours
70 hours
This table Indicates
a faoric
composed of pure
that it m a y be n e c e s s a r y to expose
dye silk to a c c e l e r a t e d aging Tor
periods longer than GO hour s (the exact
mined because of limitations
time bein'; u n d e t e r ­
In the amou n t
of test fabric)
in order to obtain a pr e d i c t i o n of its s t r e n g t h after 12
weeks
of natural aping;
in Table VI,
it shows,
also,
as did the results
that 1O0 liours of an a c c e l e r a t e d aging t r e a t ­
ment w o u l d p r o b a b l y give a. good i n d i c a t i o n of what might be
expected of a pure
agin;.
Thus,
dye
silk fabric after 24- weeks
it a p p a r e n t l y m a tter s little in the case of
pure dye silk, w h e t h e r
the bursting s t r e n g t h test is made in
the dry or wet condition,
c one e m e d •
of natu ral
insofar as the time of testing is
96
’.7eighted Silk Fabrics.
Tlie we 1 ghted silk fabrics
(Figures 8 and 9) liave b e e n graphed in the same manne r as
the pure aye sillcs, as m e n t i o n e d previously.
of tliis type of fabric showed losses
All except
two
in dry bursting strength
beginning with, the 40-hour accelerated aging period.
Fabrics
Humber* 29 and H u mber 55 showed gained in d ry bursting
strength throughout the test period, w h i c h ended at 60 hours
in both cases.
All of the weighted silk fabrics showed
losses in s t r e n g t h after 12 weeks
tv;o fabrics m e n t i o n e d above
weeks
of natural aging,
of natural aging except the
(Ihun.bers 29 and 35).
A f ter 24
all fabrics in tlie weighted silk
group showed losses
in strength.
(rluubers 29 and 35)
showed losses in streng th after 24 weeks
of natural aging, while not
natural aging period,
Since even tiiese fabrics
losing strength at the 12-week
it might be expect ed that they w o uld
have shown losses after accelerated aging if they h ad b e e n
subjected to longer periods
A comparative
silk fabrics,
of aging.
table has been arranged for the w e i g h t e d
as was done for pure
which the hours
dye silk fabrics,
of accelerated, aging comparable
liours of natural aging,
respectively.
in
to 12 and 24
See Table IX.
97
TABLE IX
TTUI.TBER OP 110UBS OP ACCELERATED AGING ON WEIGHTED
SILKS COMPARABLE TO SPECIFIED PERIOD OF
ITATUBAL AG I KG CDR’U BURSTING- STRZNGTIIT"
3
Hours of Accelerated.
Aging Comparable to 12
Weeks of Natural Aging
Not sufficient fabric
for natural aging test
Hours of Accelerated.
A g ing Comparable to 24
Weeks of natural Aging
Not sufficient fabric
for natural aging test
G-D-B
50 hours
90 hours
3-D-S
50 h o u r 3
>60 hours
29
40 hours
>60 hou r s
30
30 hours
>60 hours
51
> 6 0 hours
>60 liours
32
4 0 hour s
70 hours
33
30 hours
> 6 0 hours
34
60 hours
>60 hours
35
50 hours
> 6 0 hours
5G
50 hours
> SO hours
58
> 6 0 hours
> 6 0 hours
39
> 6 0 hours
> 60 hours
Fabric
Number
Tiiis tabic indica-toc
that, in the majority of cases, an
accelerated a^ln;.;. treatment of at leant GO lour s would shov
what night be expected of the fabric after* 12 weeks of
natural aging.
A longer period of
would, obvious 17
be necessary to show what might bo expected after 24 weeks
98
oT aging.
Prom tho table, it v;ould seen that 1O0 hours of
accelerated aging w o u l d five an. Indication of what night be
expected from 24 weelcs of nat-ural aging.
Y/hon subjected to the w e t buirsting s t r e n g t h test,
ail
of the weig n t e d sill: samples showed losses in strength when
aged as much as 40 hour's, with the exception of one fabric
(dumber 3).
This fabric
could not be carried longer than 20
hours because of the snail amount available for use
study•
in the
Sample number C2-D-1 showed a slight gain in strength
after 60 liours of aging as compared w i t h 40 hours of aging;
after longer aging tines, however,
loss in strength.
All
the sample
showed a great
samples showed a loss in strength
after bo tin 12 and. 2d we eh s of natural aging.
A table showing hue
times of a ccelerated aging
compara­
ble to natural aging of 12 and 24 weeds, r e s p ectively, lias
been prepared
(fable h ).
99
TABLE X
;ui:
li OP HOURS
SILK ^ ***0*
• *
ftT
: a. I:dti
L E H A T E D AGIITG
SFL If IC
lI O D
cTJRSTI
*./ a .. JL / j
t
ueighted
3
K o u r s of A c c e l e r a t e d
A g i n g Comparable to 12
V/eel:s of" n atural A fine
Hot sufficient fabric
for n a t u r a l a g i n g test
liours of A c c e l e r a t e d
Aging Compar a b l e to 24
leeks of hatairal A g ing
hot sufficient fabric
for n a t u r a l a g i n g test
8-D-B
TO hours
80 hours
G-D-5
25 hours
> 6 0 hours
29
20 hours
> 6 0 hours
50
> 6 0 hours
> 6 0 hours
51
>60
fabric
IT'araber
hours
> 60 hours
GO
SO hours
> I O © hours
Oi)
10 hours
;> GO hours
04:
10 hours
> 60 hours
o5
>60
hours
> GO hours
>60
hours
36
50 hours
38
> 6 0 hours
> GO hours
59
/> 60 hours
> GO hours
A l t h o u g h GO Lours of a c c e l e r a t e d a ;in;- v/ould indicate
tlie loss in v;et s tren.gth v/bicli m i ght be e x pected in half of"
the cases
g :v .iplcs
of v;el;;ftcu sill: fabrics,
u o u l d re p l r e
longer periods
v-rder to indl cat e orobable losses
tlie other h alf of the
of a c c e l o r a t c d ain;; in
durin,: na tural a jing for
100
12 v;eo!:s.
A mlnlnmni of 100 hours
be n e c e s s a r y to p r e d i c t the
loss
w h i c h w o uld occur after 24 wee k s
Rayon
Fabrics.
Figures
st r e n g t h data for rayon.
of a c c e l e r a t e d aging would,
in v/et b u r s t i n g str ength
of n a t u r a l aging*
10 and 11 give the bur sting
Tlie results
s t r e n g t h test on the r a y o n fabrics
samples w h i c h were large
than 20 hours
creases
while
in strength.
w h i c h showe d increases
The
show that
two of the four
e n o u g h to age for p e r i o d s
s h o w e d increases
during this period,
of t h e d r y bur sting
in dry b u r s t i n g
(humbers
in strength after
the two s a m p l e s
showed de ­
23D and 2 4 D )
in strength after b o t h periods
a c c e l e r a t e d a g i ng,for w h i c h they were tested,
Increases
s trength
the other two samples
two samples
12 weeks
also
of n a t u r a l
showed
while
(Uur.ibers 1 G D and 26D) w h i c h showed losses
losses
after 12 v/eeks of nat u r a l aging.
24 weeks
aging:, Fabric number* 2 4 D
The
of
aging,
s t r e n g t h after a c c e l e r a t e d a g i n g showed
b u r sting
of more
still
After
in s trength
of natural
did not s n o w a loss
strength, as c o m p a r e d w i t h the
in.
o r iginal
in dry
sample.
other three r a y o n s a m p l e s , which -were n a t u r a l l y aged for
24 weeks,
showed losses in b u r s t i n g strength.
four of tiiis g r o u p of fabrics,
therefore,
Three
out of
s h o w e d accelerated,
and n a t ural aging results w h i c h were comparable.
A co m p a r i s o n of the results
of a c c e l e r a t e d aging and of
naou ral aging is given in Table XI*
101
TABLE XI
inJI.TBiCR OF H O URS OF ACCELERATED AGING- 017 RAYON
COr.'PARABLE T 0 SPECIFIC P E R I O D O F NATURAL
ag -iit g T T r ~ r F w s r T i ; c ~ " s t r t w g f h T ^
Fabzric
Number
Hours of Accelerated
Aging C o m p a r a b l e to 12
Weeks of N a t u r a l A g ing
Hours of Accelerated
A g i n g Comparable to 24
W e e k s of Natural Aging
23 D
60 hours
> 60 hours
2*4D
30 hours
30 hours
16D
20 hours
90 hours
20D
TO hour s
80 hours
The? e in a vBcle variation in the h o u r s of accelerated
aging win! chi c o m p a r e v/i tli 12 weeks
ehclc-ss, tlie fabrics
of natural aging.
ITevor-
used. In the s t u d y w o u l d indicate that a
minimum of 70 hours w o u l d loo n e e d e d in order to predict
tlie
per*foiumcc of c e r t a i n r e p r e s e n t a t i v e r a y o n fabrics w h i c h
might
be encountered.
with 24 weeks
Front the results
of n a t u r a l aging,
shown to correspond
it Is i n d icated that a time
of 1 GO liours of a c c e l e r a t e d a/piny;, as a minimum,
q u i r e d in order
would, be r e ­
to predict wiiat m a y be e x p e c t e d to happen
du ring this longer
time of natural aping.
When, s u b j e c t e d to tire wet bursting; s trength test after
varioius periods
of aging, the r a y o n fabrics
showed results
similar to those s h o u n b y the dry b u r s t i n g strength,
whole.
while
on the
FaUric 1lumber 28D and lumber 2iD gained in strength,
in; iber s 16D a n d
26D lost in s t r e n g t h after accelerated
102
aging.
Humberts 2 3 D and 2 4 D showed only slight losses
strength after- 2 2 weeks
of natural aging,
but i n c r e a s e d in
bursting s t r e n g t h loss after 24 weeks of aging.
two fabrics
(llurnhers 1.6D and 26D)
which increased w i t h the
aging.
The other
showed losses in strength
length of the period of nat u ral
Comparative results for wet breaking strengths
rayons are
in
of
giv'en in Table XII.
T A BLE XII
NTJI.TBER OF1 HOURS OP A C C E L E R A T E D AGING ON R A Y O N
C O NPA.fiA B L E TO SPECIFIC PERIOD OF N A T U R A L
A P I N G T 1HLT PURS TING STRENGTH*)
Fabric
lumber
liours of A c c e l e r a t e d
Aging Comparable to 12
Neels of listura 1 Aging
Hours of A c c e l e r a t e d
Aging Comparable to 24
Weeks of N a t u r a l Aging
231)
> 60 hours
> 6 0 hours
24 D
40 liours
40 hours
1GD
20 liours
1O0 hours
26D
40 hours
90 hours
F r o m the
data in Table XII,
somewhat greater
an accelerated aging test
than 60 hours is indicated as n e c e s s a r y for
predicting what would be expected during 12 weeks
aging.
of natural
To correspond with what m i ght be exp e c t e d during 24
weeks
of natural
aging;, a m i n i m u m of 100 hours of a c c elerated
aging
is necessary.
103
Re suits
Figures
12,
13, a n d ZL4= g i v e the results of the pH
neisurenent s in puxe dye sills, weighted, silk,
a n d rayon, re-
spe cti vely.
P~ur»e Dye Silk Fabric s .
of trie pure d y e silk gro u p
successive pe rinds
All. of the fabrics except one
sinewed a d e crease in p H w i t h
of aging;
became more acid upon aging.
this indicates that the fabrics
fabric
Humber 1 showed a very
slight i n c r e a s e ia pH value at iO hoars of aging,
tliis fabric w a s n o t
although
s u f f i c i e n t l y large to permit further
tea ting.
’
alien subjected
sane results
to nat u r a l aging,
the fabrics showed the
as v/i tb a c c e l e n i t e d sg ing, namely,
a decrease
in tlie pH reading: v/i th. increasing periods of exposure to the
aging test.
It is interesting to note
dye s i l k fabrics
decrease
that all of the pure
in pH value f r o m 12 to 24 weeks at
approx irnate ly the sane r a t e v/i tin tiro.
I eight ed Sillc Fabric s .
a similarity
in the
amount
The w e i g h t e d silk fabrics showed
of p H change,
by the clustering of the curves
is interesting
decreases
on the g r a p h
(Figure 13).
It
to n o t e t hat the angle at w h i c h the p H value
from 12 •weeks to
alt samples,
as is d e monstrated
241 weeks was likewise
and was so m e w h a t
similar for
similar to that for the pure
104
dye silks.
The wei g h t e d silk fabrics
a decrease in pH
showed,without exception,
(increase in acidity) with, an increase in
the tine of aging,
b oth under accelerated or natural c o n d i ­
tions .
Rayon F a b r i c s .
In all but one case
the pH value of the rayons
celerated aging.
(Fabric Humber 24D)
In the study decreased with a c ­
All of the fabrics
pH change w i t h natural aging.
showed the same type of
The decrease was somewhat
sharper than p e r t a i n e d w i t h the silk fabrics.
See Figure 14.
Although there was a decrease in pH with aging with most
of the fabrics in the study,
the rate of decrease was not
sufficiently comparable to the loss in strength of the fa b ­
rics during aging to suggest that pH measurements be used as
a substitute for s t rength tests in judging the break-down of
f a b rics.
h a t e r -Soluble N i trogen Changes
As has b een mentioned, the percentage of water-soluble
nitrogen extractable from each silk fabric was determined
both before and after the various aging experiments.
data have be e n gra p h e d in Figures 15 and 16.
Reimel
(13), Yoder
These
Although
(17), and others working at Trie Pen nsyl­
vania State College on silk, have found a relationship
between increases in the water-soluble nitrogen in the silk
with time of aging,
and with strength loss, under artificial
105
and natural conditions,
tlie results
obtained in this study
failed to show a clean-cut relationship between these fac­
tors.
An e xplanation probably lies
in tie tact that the
earlier workers used considerably longer periods b o t h for
the a c c e ler a t e d and for the natural aging treatments, and
obtained percentage increases in w a t e r — s oluble n i t r o g e n of a
r.rnch higher order of magnitude than w a s
found in this in­
vestigation.
For ag ing tests practicable f r o m the point of view of
the type of testing which, w o u l d be done
other testing laboratory,
in a commercial or
it m a y he concluded that the
water-soluble n i t r o g e n test,as u s e d in this
good a criterion as strength measurements
study,
is not as
in evaluating
pi-obab 1 e fabric perfor®manco.
Visco sit^>
of F l u i d ! t y C h a n g es
The fluidity chsurges obtained
in the rayon fabrics,
c raplied in Figure 17, were found to he of an e x t remely low
order of magnitude, particularly w i t h respect to the fabrics
which were g i ven the a c c e l e r a t e d aging treatment.
In fact,
no change in this factor was sufficiently great to recommend
fluidity measurements
aging treatments
as
substitutes
for* strength values in
of trie type considered in this study.
is in contrast with the work of Stubblebire
This
(15), who found
a definite relationship between str e n g t h loss and fluidity
increase in cottons
age cl by repeated successive launderings
1 0 5
with, chlorine bleach.
In the latter* case,
the strength, losses
were extremely high and the fluidity changes were of a conparatively greater order of magnitude.
In c o m o n -.vith the water- solutle n i t r o g e n test for silk,
the viscosit y or flu i d i t y test for rayon does not seem,
this work,
to he p r a c t i c a l
from
as a criterion for judging break­
down in rayon fabrics f r o m the commercial testing laboratory
point o f view.
premium,
In the latter
case, where time is at a
and a d e t a i l e d chemical procedure is not so practi­
cal as a simpler p h ysical test,
such as,
for example,
the
breaking or b ursting s t rength test.
Inter-relationship of Different Tests on Separate Fabrics
Tlie second group of figures
(Figures 18 to 52) brings
together in juxtaposition graphs of the tests performed on
one fabric.
Tie tests v/ere as complete as possible w ith the
amount of fabrics a v a ilable in each case,
being tlie o nly strength measurement made
aged fabrics because of lack of material.
series of exposure
aged fabrics,
bursting strength
on the n a t urally
The complete
times was not possible on artificially
as has b e e n mentioned earlier.
Interrelationship of the factors of breaking strength
(wet and dry) after a c c e l e r a t e d aging,
(wet and dry), w a t e r-soluble nitrogen
bursting strength
(of silks),
and fluidity
(of rayons) after a c c e l erated arid natural a ;in ., respectively,
have been sought b y visual inspection of the various
curves
107
for fciie different fabrics,
in Table IIII.
and the re salts have b e e n recorded
In compiling this table,
the similarity of
tlie graph of e a c h factor v/itti tliat of e a c h other factor was
noted visually,
b y conparing tie direction of the curve and
the g e n era l order of magnitude o f changes
period to another*
The cases
of similarity were tabulated,
and the percentage of instances
judged to be similar
was
from, one test
in w h i c h the curves were
calculated.
108
103a
1ABLJJ XIII
01? AI L TABi 17. CS SHOW G L I H A A L SIMILARITY
\'j ate
r— 5 oluble
Li trogen
(Sill:s )
(A c c e l e r a t e d )
Order of
Ilagrii tude
of c R a n g e
■too small
for p r a c ­
tical use
Water-Soluble
l'Iitrogen
(Silks)
(natural)
Order of
Magnitude
of change
too small
for p r a c ­
tical use
Viscosity
(Rayons)
(Ac c e l ­
erated )
Order of
Ma g nitude
of change
too small
for p r a c ­
tical use
Viscosity
(Rayons)
(N a t u r a l )
4 .3
35 .3
Lit to
lit "to
Ditto
Ditto
Dit t o
Ditto
Ditto
Ditto
28 .3
-17 .6
Lit to
Lit to
Ditto
Ditto
Ditto
D i tto
Ditto
Ditto
42 .9
Lit to
Ditto
Ditto
Ditto
Lit to
Ditto
Ditto
Ditto
-
-
Ditto
Dit t o
Ditto
—
-
—
Ditto
Ditto
—
-
—
-
Ditto
-
-
—
-
-
pH
(n a t u r a l )
L4 .3
33 .1
Order of
Magnitude
of change
too small
for pra c ­
tical use
109
Dry and w e t b r e a k i n g s t r e n g t h curves
for the a c c e l e r a t e d
aging series of f a b r i c s w e r e similar in 4 1 . V per cent,
the over-all cases,
In 86 per cent,
of
as judged by the s u b j e c t i v e m e t h o d used.
of the cases,
the losses in w e t s t r e n g t h were
greater than those in dry s t r e n g t h of the same fabrics,
suggesting the p o s s i b i l i t y of m a k i n g all or a part of the
determinations in the wet c o n d i t i o n f o l l o w i n g a c c e l e r a t e d
aging tests.
This
Is further a r e a s o n a b l e suggestion,
since
the wet curves are as reg u l a r in outline as the dry curves.
D r y b r e a k i n g s t r e n g t h curves after a c c e l e r a t e d aging
were similar to d r y b u r s t i n g s t r e n g t h res u l t s on fabrics
given the s a m e a g i n g tr e a t m e n t in 4 4 . 3 p e r cent,
of the
cases by v i s u a l i n s p e c t i o n of the entire curve.
In few
cases were
curves
judged as d i s s i m i l a r b e c a u s e
opposite in direction;
was
the chief r e a s o n for d i s s i m i l a r i t y
found In i r r e g u l a r i t i e s
periods of aging.
they were
In the short a n d intermediate
U p o n lon g e r periods of a c c e l e r a t e d aging,
principally the 60- and 100- h o u r periods,
the dry breaking
and b u r sting st r e n g t h s were comparable in the m a j o r i t y of
the c a s e s .
The dry b r e a k i n g s t r e n g t h c u r v e 3 for fabrics g i v en a c ­
celerated aging treatments were less similar to wet than to
the dry b u r s t i n g s t r e n g t h curves.
curves for a c c e l e r a t e d aging,
extremely h i g h similarity;
The d r y b r e a k i n g s t r e n g t h
on the other hand,
52.4 per cent,
showed
of the curves
of
110
these pairs
of factors were a d j u d g e d similar.
Again,
break in.:; strength accelerated aging fabrics were less
lar to the wet 11ian
to the dry bursting
lowing a c ce 1 er a t Inc;
ay I n;,.
T
c u r v e s for
strength losses
varying; depress of similarity, b o t h
aplir, as d for the nat u r a l l y aping
earlier in the discussion,
dry
s imi­
strength curves
f ol­
and pII changes showed,
for the accelerated
samples.
As ;:ient ioned
the la cl: of similarity of results
in these two tests was sucli as to eliminate pIT as a s u b s t i ­
tute tost for b r eaking
periods
strength where relati v e l y snort
of test are involved.
n e v ertheless there is a
general lowering of pH with, increasing lengths
aping.
The several pH curves,
natural aping
of time of
b oth for artificial and
showed considerable
similarity.
The curves for w a t e r-soluble nitrogen of si lies and for
viscosity in ravens
showed changes on these .factors of such
a low order of m a g nitude as to render t no se
cal ac s :fbst itutes
tests i m practi­
tor strength tests in short-time aging
tes t s .
The
strong;!] i tests not discussed above show varying
d a ar c e s o f si nil n.r ity w i th each ot 1:or , 1 n s omo cases quite
high.
the similarity bet w e e n trie bursting; strength results
of a r t i f i c i a l l y and n a t urally aged fabrics,
u wide rnn'c
of
alt h o u g h showing
v m c c n t a g o : , ivcrc such as to Indicate
that
Ill
tne one c o u l d be
substituted
3 ince the degree
of s i m i l a r i t y becomes g r e a t e r w i t h longer
periods
of artificial aging.
for each, other,
particularly
112
S U m ;j a R Y
The r e s u l t s
o btained throu;:h the study of comparative
d ete r i o r a t i o n of pure dye silk,
w e i g h t e d silk,
and r a yon
fabrics during an a c c e l e r a t e d arming and during natural aging
treatments
in the e x p l o r a t o r y part of this study,
are
surnuarized as follows:
The r e s u l t s
of
period of at least
the
strength tests
GO hours
Indicate that a
of a c c e l e r a t e d aging is necessary
to simulate a p e r i o d of 12 weeks
of natural aging u n d e r the
conditions of the p resent study,
a n d also,
at least 100 hours
that a p e r i o d of
of a c c e l e r a t e d aging is n e c e s s a r y to
simulate a p e r i o d of 24 weeks
of n a t u r a l aging*
B reaking s t r e n g t h and b u r s t i n g s t r e n g t h res u l t s were
slailar to a s u f f i c i e n t l y h i g h degree
to suggest
that b u r s t ­
ing s t r e n g t h m e a s u r e m e n t s m i g h t be s u b s t i t u t e d for b r e aking
strength m e a s u r e m e n t s w h e n time and amount
of fabric are
1 kilted.
The w et s t r e n g t h tests
than did the d r y tests,
amount
of error should
measuremento
showed greater losses in strength
and,
therefore,
they be used as criteria in s t r ength
f o l l o w i n g aging.
The b r e a k i n g s t r e n g t h tests
to Ldie pH changes
two
toots;
woiild give a smaller
but
the
to indicate
showed sufficient
sone
similarity
a t i o n s h i p b e t w e e n these
simila r i t y in trie results
of these
tests
113
was not; s u f f i c i e n t l y preat
strength
to r e c o m m e n d the s u b s t i t u t i o n Tor
tests.
The changes w h i c h o c c u r r e d in the v/ater-soluble n i t r o ­
gen determinations
for silk fabrics
viscosity d e t e r minations
low degree
'■ctomn’ning
of m a g n i t u d e
for r a y o n fabrics were of such a
as to be u n s a t i s f a c t o r y as tests
d e t e r i o r a t i o n during; short periods
fixe so tests., however,
periods
and in the o u p r a m m o n i u m
show greater changes
for
of aping;,
after longer
of aging a n d m i p h t prove s a t i s f a c t o r y w h e n tine is
. 4-
Thc results
of this part
of the study r e c o m m e n d the
need for further i n v e s t i g a t i o n of this problem,
cular enohas is u pon the longer periods
with parti­
of a c c e l e r a t e d aging
114
P A R JT
0
A T
o
II
o u
o
IV
i-i
A
D
I
X
C
.
a
0 P
o
A.
S T U D
D U
A L
T I L 12
- —
tr
JL
1
I IT I A
The
exploratory
vestigation made
011 f u r t h e r w o r k
fabrics
worked
before
out .
f or t h e
ject,
purpose
periods
in
this
of the
cured
thc;.i f r o m
order
to
not
II
of
by
of a
of t h e
study,
was
I of t h i s
desirable
part
of
Bureau
in a d e p a r t m e n t
study
mills
store
was
undertake
on
obtained
of t h e
were
supplied
who
of
were
a larpc
purchased
eastern
sul
1
fabrics
in
manufacturing
the
durine;
b y V; • I
turn p r o ­
then.
tiiree r e p r e s e n t a t i v e
method
carry
c o u l d b<
Lost
of Standards,
series,
former
results
in­
for t extile
information
awiny•
the
various
the
the
to
technique
therefore,
further
accelerated
the
Part
satisfactory
conceminp
the
it
In
a c c e l e r a t e d apin.p m e t h o d
liational
complete
obtained
market
of
that
obtaining
second
Appel
evident
details
Part
I Q IT
study pres e n t e d
on an
particularly
1 onuer
used
It
O D IT C T
on
In
fabrics
the
city.
op<
116
I! E T II 0 D S
O F
P R O C E D U R E
Fabrics
The fabrics used In Part IT of the study consisted of a
total of 13,
Including the f o l l o w i n g :
Three pure dye sillc
fabrics, one of which was a discharge print;
silts,
one a flat crepe of plain color,
two wei.yhted
and the other a di s ­
charge p r i n t ; five ray/ons , three of the viscose type, and
two of the cellulose acetate t y p e ; a v/oven n y lon fabric; a
specially finished cotton shir tiny; and a cotton shlrtlny
of similar const r u c t i o n without the finish.
The n y l o n was
Included because of the present interest In this fiber and
its future potentialities
on the textile m a r k e t •
The sample
of a specially finished cotton shirtiny was from a fabric
wh ich was known to deteriorate duriny and after laundering
with, a chlorine bleach by a m e t h o d similar to the generally
accepted in commercial laundry practice.
Construction of Fabrics
The fabrics In Part II of the study were analyzed for
fabric construction according to the same methods as those
described in Part I, payee
8
to
:oadc for weiyht per square yard,
per inch in the yarn,
11 .
heasurenents were
thread count, weave,
twists
filaments per y a r n , and, denier or yarn
117
Method of Acinn
The fabrics were aged in exactly the same manner as was
described in the first part of the study,
In Part II, however,
pages
11
to
15 -
all of the fabrics were of sufficient
size to permit aging for a complete series of periods of
time, n a m e l y — for 20, 40, GO, and 100 hours of accelerated
aging, respectively,
and for 12 and 24 weeks of natural in­
door s\mlight aging,
under the conditions described in Part
I.
The specially finished cotton sample was not subjected
to natural aging, but instead it was laundered.
Physlcal and Chemical Tests
After aging,
the samples were subjected to the same
physical and chemical tests as in Part I.
The method of
procedure used for each test 'was the same as that used in
the earlier part of the study.
A description of the break­
ing strength met h o d has b e e n given on page
strength, and pi! determination on page
nitrogen on page
on page
15 ; bursting
16 \ water-soluble
17 ; weighting deterrnlnatIons
20 ; and v i s c o s it y determinations
(for silks)
(for rayons)
on
no
'Creaking strength, burs tin/; strength,
pH, and eitner
water-solub 1 e nitrogen or viscosity tests — depending upon
the chemical nature of the fabric--wcre performed on all
specimens whi c h were
subjected to accelerated aging' except
118
tnat
blie broaldn;'
because
strength. test was o m i t t e d for* tlie cottons
of a shorta;;;e of fabric.
Breaking; strength tests
wore omitted f r o m all n a t u r a l l y a g e d fabrics b e c a u s e of
soace l i m i ta t i o n s
conlilions•
for exposing hloo fabrics u n der similar
119
P R E S E N T A T I O N
The
O F
D A T A
Tiber content and c o n s t r u c t i o n of e a c h of the fab-
rics u s e d
In Part II of the study are g i v e n in Table XIV,"
Parts A and 3, pa^es 121 to
The b r e a k i n g strencths
12&
of the fabrics, b e f o r e and after
a p p l i c a t i o n of the d i f ferent aping treatments,
centage losses
and the p e r ­
In str e n g t h r e s u l t i n g f rom the t r e a tments
given in Tabic XV,
The b u r s t i n g
Parts A and R, papes
strengths
123 to 129.
of the fabrics b e f o r e
and after
the s p e c i f led agin'" treatments, a re -given in Tabic XVI,
A, pages
130 to
Part B, pages
irr tlal and final pTI values,
on the respec t i v e aging tr e a t m e n t s
Part A,
XV IT,
page
Part
131 ; and the -percentage losses In bursting
strength in Table XVI,
We
are
134;
ancc the changes
132 to 133.
found for the
fabrics
are g i v e n In Table XVII,
In pH are given in Table
Part B, p a ,Te 135.
The data on the p e r c e n t a g e
of w a t e r - s o l u b l e n i t r o g e n ex ­
tracted. from the silks, b e f o r e a n d after the different aging
treatments,
are g i v e n In Table XVIII,
the per c e n t a g e changes
XVIII,
Part B, page
A, page
137.
or fluidity,
of cellulose fabrics
138;
15SJ and
In w a t e r - s o l u b l e n i t r o g e n In Table
lire data on viscosity,
solutions
Part A, page
and tne changes
in cuprarunonium
are g i v e n in Table XIX,
in v i s c o s i t y are
Part
siiovm In Table
120
XIX,
Part B, pa^e
138.
The dat a cited above as s h o w n in Tables X I V to XIX,
clusive,
to 163-
have b e e n g r a p h e d In Figures 33 to 56, paces
139
in­
Fabric
I;limber
Type
Fiber
Weight per
square yard
in ounces
-----Weave
read
Count
Warp
Filling
Percentage
non-fibrous
material
T
ii
Pure Dye Silk
1.37
Plain
146
82
4.49
L
Pure Dye Silk
2.00
Plain
180
82
10.02
T1
I1
Pure Dye Silk
1.75
Plain
170
116
3.68
G
Weighted Silk
5.58
Plain
190
81
66.35
H
Weighted Silk
2.67
180
78
51.88
A
Viscose Rayon
5.69
Plain
Satin
5 shaft
185
88
X
B
Viscose Rayon
5.45
Plain
108
82
X
C
Viscose Rayon
Cellulose
Acetate Rayon
Cellulose
Acetate Rayon
3.45
80
61
X
220
72
X
3.61
Plain
Satin
5 shaft
Satin
5 shaft
220
70
X
Nylon
1.45
Plain
108
92
X
D
E
‘T
3.68
VABLL XIV-B
FIDXB COXIh.V AIIP OOXSlRUCTIOX OX FABXICS IX PART II OF TI
Fabric
number
•rr
Average Tv/ists per
yarn per inch
hart)
Filling
T
T
K
1\
L
IT
S-20.G
2s-63.5
2Z-69.2
M
1
4
-
II
z-43.0
G
T
T
a
II
i 'i
Threads per
yarn
Y/arp
Filling
Filaments
per yarn
V/arp
Filling
STUDY
Denier
Warp
Filling
2
4
26
65
13/15
13/15
3
3
38
30
16/18
20/22
0
3
45
32
13/15
15715
13/15
n
----
2z-69.4
2s-62.2
2Z-67.1
o
2
21
25
13/15
2
2
23
22
13/15
.
16/18
A
s-25.8
s-21.2
1
1
59.8
59.2
101
104.7
D
s-24.3
s-25.1
1
1
59.6
85.8
104.6
166.3
C
s-26.0
s-17.2
1
1
40.4
112.4
148.3
207.0
D
S-30.2
S-20.8
1
1
25.2
39.8
97.0
99.3
T-1
s-34.4
s-26.4
1
1
26.0
39.6
97.0
99.2
IT
s-102*8
s-29.2
1
1
17.0
21.2
48.0
61.3
'■Only natural twist oresent. Three o five turns per inch.
xXayon fabrics and nylon fabric do not contain weighting.
122
123
T A B L E X V - PART A
BREAKING S T R E N G T H OP FABRICS B E F O R E A N D A F T E R A G ING
Fabric
Number
t)ry Bre a k i n g S t r e n g t h Before Aging
Warp
Filling
A
B
Pounds
Pounds
Wa r p
Filling
S um
per one
per one
pounds
pounds
A+B
inch
inch
per
per
strip
strip
thr e a d
thread
Thread
Count
Warp F i l l ­
ing
Pure Dye
Silk
K
L
F
Weighted
Silk
G
TT
J.X
Rayons
A
B
C
D
E
Nylon
Tf
ii
Fabric
Number
146
ISO
32
22
T76"
ITS'
ISO
ISO
78
si
185
88
To 8 '' "S2" '
SO
ST
220
72
220
Vo
103
'
92
Thread
Count
V/arp F i l l ­
ing
Pure dye
Silk
146
82
K
82
L
180
r
p
'-'TTcT ' ITS" "
Wei ahted
silk
G
81
190
H
72' "
130
ay on s
J*
r\
X
88
135
82
108
C
oO ' " T T " '
1)
72
22T>
E
To"
220
Nylon
92
ii
108
38.0
79.4
59.4
44.4
44.4
I S . 4'
76.8
41.6
46.0
39.8
0.26
0.49
0.75
21.2
O'. 4 4
0.S2
29.6
0.35
"6.35
■~~0Y2S —
16.8
0.23
'
0.21
"O'.T V ' '
0.44
O'.'2'S
0.40
0.56
o'.7 2
0.25
0.28
0.82
0.25
T.41
0.43
0.98
52.0
55 .0
47.2
18.0
19.4
0.42
0.39
0 • 63
0.24
0.24
59 •0
40.0
0.55
20.4
35.0
'“0 ."6T
0.42
0.49
0.52
D r y Br e a k i n g S t r e n g t h A f t e r 20 Ilourer
A c c e l e r a t e d A g ing
D
Filling
0
Warp
Filling
Warp
S um
Pounds
Pounds
pounds
pounds
per one
CfD
per one
per
per
Inch
inch
thread
tliread
strip
strip
38.2
74.0
7o .0
34.6
27.4
29.6
0.26
0.41
0.41
0.42
0.53
0.26
0.68
0.74
“ 5.67
42.4
42.6
15.2
14.2
0.22
0.24
0.19
0.12
0.41
o.4“2
75.4
59.6
49.0
51 •2
51.2
30.8
45.2
47.7)
Is.o
19.0
0.41
0.37
0 •61
0.24
0.25
O .35
0. 55
0.77
0.25
0.27
0.76
0.92
‘
1 .52
0.49
0 .50
56.0
39.5
0.52
0.45
0.95
124
T A B L E ICV - PART A
Fabric
Humber
i
f
l
Pure Dye
Silk
K
L
F
17e 1 glut e d
Silk
G
H
Rayons
A
B
C
i7o
190
i2o
185
108
80
220
32
82
US
36 •6
6b.S
SI.8
38.6
£6.3
26 •6
0.25
0 •5b
0 •36
0.48
0 •35
6.23 ’
0.73
0.72
0.5b
80
72
35.4
39 .4
13.8
12.2
0.19
0.22
0.17
0 .1 S
0.36
0.38
88
69.6
33 .8
49.6
52.4
5b.8
28.8
43.2
45.8
18.0
0.38
0.61
0.62
0.24
0.24
0.33
0 •55
0.73
6.22
0.26
0.71
0.84
1.37
0.46
0.56
48.5
35.5
0.45
0 .59
0.84
82
-p,T
226
SI
72
70
By Ion
11
108
92
Vabric
Humber
t>ry B r e a k i n g S t r e n g t h A f ter 40 Hours
A c c e l e r a t e d A c Inc
V/arp
C
D
Filling
Pounds
Pounds
V/arp
Su m
Filling
per one
per one
pounds
pounds
C+D
inch
i nch
per
per
strip
strip
t hre a d
thr e a d
Thread
C o unt
V;arp F i l l ­
ing
146
180
(Continued)
Td.o
D r y B r e a k i n g S t r e n g t h A T ter 60 Hours
A c c e l e r a t e d A g ing
D
Filling
C
V/arp
Filling
S um
Pounds
V/arp
Pounds
pounds
C t-D
per one
pounds
per one
per
i nch
per
inch
tliread
thread
strip
s trip
Thread
Count
V/arp F i l l ­
ing
Pure Dye
Silk
K
rJ
X
p
V/el dated
Silk
G
T.r
Rayons
A
B
r
c
D
X-j
146
180
170
82
.. 82
116
190
180
80
78
88
185
82
108
80 ‘ "ST
2 2 6 ■~T2 —
2 2 0 r T<5
ITylor
1i
103
no
K>*—*
"
1
—
33 .0
""ST.T"
53 .2
37 .0
23.8
26 .6
0.26
0.52
0.51
0.45
0 .26
0 .23
0.71
0.67
0.54
24 •4
56.4
11.6
11.4
0.13
o.2o
0 .15
0.15
0.28
0 •35
66.2
23.6
45.3
55.2
— --MW
2o . 0
38.2
A*
4A 0 •b
15.2
15.2
0.36
0.2S
0.57
0.25
0.24
0.26
0.47
0 .76
0.21
0.22
0.62
0.73
1.33
0".4/S
0.46
0.42
0.39
0.81
\0O • O
45.0
1
'—
35.6
1
125
T A B L E X V - PART A
Fabric
ITimber
Pure Dye
n^-L•.Tb
»
X J'«
i:
L
,7eighted
Gill:
GH
Rayons
A
B
C
D
E
lylon
ll
Tliread
Count
V/arp Fillins
146
82
186
32
" T7(T ■ 118
(Continued)
D r y B r e a k i n s Strength. A f t e r 100 Hours
Accelerated Aging
V/arp
F illing
C
D
Pounds
Pounds
V/arp
Fil l i ng
Sum
per one
per one
pounds
pounds
Ct-D
inch
inch
p er
per
strip
strip
t hre a d
tliread
34.6
66.2
4 2.6
36.0
2T.5' '
25.2
0.23
0.37
6.25
0.44
0.26
<9.22
0.67
9 .53
0.4V
190
180
80
78
25.4
3(5.3
10.6
ii.6
0.13
o.2o
0.13
0.15
0.26
0.36
185
108
fid
oAnV-/
220
88
3'2
61
' Vo
63 .8
29.6
42.0
52.2
55.8
23.4
36.4
41.6
13 .(5
14.8
0 .o4
0.27
0 •53
0.24
0.26
0.27
0.44
O •6fi
o.lfi
<9.21
0.61
0.71
1.21
0.43
0.46
108
92
32.6
32.2
0.30
0.35
0.65
VS
126
T A B L E XV - PAET A
ihr•ead
C o l pit
W a r p Fillins
Fabric
Number
(Continued)
Wet Breaking S t r e n g t h Before Aging
warp
Filling
E
Pounds
Pounds
V/arp
Filling
Sum
per one
per one
pounds
pounds
E+F
inch
inch,
per
per
strip
strip
thread
thread
Pure Dye
82
82
21.4
116
44 .0
18.3
22.4
24.0
180'
81
78
3 1.0
26.4
9.2
6.4
185
108
88
82
29.2
11.2
0.16
io.o
19.3
GO
61
20.6
lS .4
220
220
72
70
108
92
190
Tliread
Count
V/arp F i l l ­
ing
Fabric
Number
6 4 .3
"
0.15
0.23
0.38
6.3o
0 .6 7
"" '5 . “2 '6
6.22
6.21
0.16
0.12
6.2)8
0.28
6.22
0.12
0.13
0.24
0.29
0.56
0.26
6 7 3 '2 '
•
~ 18 6
“IVo
H
146
L
F
'//eight ed
Silk
6
H
Rayons
A
T*'
C
D
E
Nylon
N
O
S ilk
K
6.47
0 .5 6
5376'
S.2
3 2 .4
3 .3
0.16
0.13
0.28
47.6
33.2
0.44
0.36
0.30
'""<5715' ' ' "C.TS”
"'<5.38'
V/et B r eaking S t r e n g t h AT' ;er 20 Hours
A c c e l e r a t e d Ag.Lng
Pilling
G
V/arp
H
Fil l i ng
Sum
Pounds
Pounds
V/arp
per one
pounds
G+H
pounds
per one
per
in c h
per
i nch
thread
tliread
strip
strip
Pure Dye
Silk
T7“
"
190
180
82
82
116
81
78
20.0
45.3
37.6
24.6
23.4
220
V-Q- —
27.8
11.6
19.2
30.6
30.4
103
92
44.0
135
88
82"
TITS’"
80 "“""51--"TUT
"~!T2'o
16.4
'"
1
0.14
YSY4"
0.25
22.0
0.22
7.2
0.13
0.13
5.4
9.4
15". 2
18.6
0.15
0.11
0.20
"6722"
" '0.Y6
0.09
6 7 6 T ““
0.11
0.19
o.Oo
0.34
6747
0.41
0.22
0.2C
0.26
0.30
3.2
3.8
0.24
0.14
0.14
o.li
0 •64
0.25
0.13
0.27
30 .2
0.41
0.33
0.74
0
0
£
F
'./eight ed
Silk
G
11
Rayons
A
3
C
D
T?
146
180
TTo
>T
1-J
127
T A B L E X V - PART A
Pure Dye
Si lb
K
L
P
17e i ght e d
Silk
G
It
Ravens
A
B
C
D
E
Nylon
1m‘
146
b e t b r e a k i n g S trength’ A^teir "4-0 kours
Accelerated Aging
V/arp
Pilling
0
H
Pounds
Pounds
V/arp
P i l l i ng
Sum
p e r one
per one
pounds
pounds
GfH
inch
inch
per
per
strip
strip
thread
thread
170
82
82
116
18.6
45.6
^0.8
17.4
18.0
” r4.6
190
160
81
78
1 9.0
1 9.0
5.4
5.4
0.10
0.11
0.07
0.07
0.17
6.1 3
135
108
80
220
220
88
27.2
0.15
0.08
0.25
0.14
0.14
0.12
0.27
0.33
160
108
72
"
20.0
oO •2
To
3 1 .6
10.4
13.0
18.8
7.0
7.6
92
56 . 0
28.2
X52
Gl
’
S .'e
0.13
0.21
0.25
"" 0.22' ‘
~'0.YS'“
0Y 13 '
0.34
o'. 47
0 .3 I
"TT.YS
O
•
to
Pabrlc
Ilumber
Tliread
Co unt
V/arp P i l l ­
ing
(Continued)
0.31
0.11
0.56
0.2 4
0.2S
0.31
0.64
o .lo
Bre a k i n g Str e n g t h Af ter 60 IIours
Acce l e rated A'* ing
V/arp
PiYITn'g'^
IT
G
Pilling
Sum
Pounds
Po'ands
V/arp
pounds
pounds
per one
p e r one
G-+H
per
inch
per
inch
tliread
tliread
strip
s tr ip
Uet
Fabric
Dumber
Pure Dye
Silk
K
L
P
'//eight ed
Silk
G
II
Rayons
A
82
32
116
19.2
33.6
31.8
19.8
13.2
12. 6
0.13
0.21
0.24
0.17
0.37
0.35
6.19
.0.11
0 .06
80
78
12.4
16.2
3.8
4.0
0.07
0.09
0.05
130
o.ot
0.12
0.14
0.06
0.20
kJ
5.0
10.4
16.2
5.8
0.4
0.14
0.06
0.2l
d
88
8'2..
61
72
26.2
c
185
108
80
3
r
Thread
C o unt
V/arp P i l l ­
ing
E
Nylon
IT
146
180
”T7<r
190
6.0
220 ''"To
16. 8
29.8
2 7.2
92
28 .8
103
itO
^
017
o.lO
o.iS
0.27
“
0 .4S
6.14
o.oO
6.22
0 .12
0.09
0.21
0.26
0.30
0 .55
128
T A BLE X V - PART A
Fabric
Lumber
Pure Dye
Silk
K
L
F
.Velghted
Silk
a
H
Rayons
A
V
c
D
IT1
-i -J
ilylon
14
(Continued)
W e t breaking S t r e n g t h Aft e r 10O Hours
Ac c e l e r a t e d Ar.ing
V/arp
Filling
G
H
Pounds
Pounds
V/arp
Sum
Filling
per one
per one
pounds
G+IT
pounds
inch
inch
per
per
strip
strio
thread
thread
Tliread
Count
V/arp F i l l ­
ing
146
180
170
82
82
16.0
55.4
15.4
116
20.8
9.4
190
'1 W
80
78
9.2
1 0 '.2
185
88
62
61
72
10 S
80
220
22o
108
7o
92
1
0.11
0.20
0.12
0.19
0.15
0.08
0 .50
0.56
0.26
2.8
2.6
0.05
0.04
0.03
0.09
O'.TJS
21.0
4.6
12.8
2.0
ll •6
28.6
50 .2
4.2
4.8
0.11
0 05
“
0.16
6 .1 s
0.05
5.8
0.16
6.15
0.35
0.19
22.6
20.0
12.0
0.06
6.10
•
0.14
0.21
J
O.lQ
0.06
0.0*7
0.22
0.21
0.45
T A B L E X V - P ART B
PERGEliTAGE L O S S
_
.—
Fabric
ITur.iber
Pure
Dye
Sill;
K
L
F
,7ei Rlit ed Sill;
G
II
bayone
A
—J
C
D
E
lylon
II
IIT BREAIII1TG STBEEGTII A E T E R A0TI7G
P e r c e n t a g e Loss in D r y
B r e a k i n g Strength.
20
40
60
10O
lours
hours
hour s
h o urs
P e r c e n t a g e Loss in Wet
Breaking Strength
20
40
60
100
hours
hours
hours
h ours
2.6
9.3
5.3
O
9 .~7” " ATO
12.2
^ •
9.8
11.4
3.2
"
---- r
' -
10.6
23.1
22.9
1 0.5
17 •5
“T 2 . T '
10.5
17.6
54 •0
51.3
53 •6
60.8
60.5
■“5773
" ‘6V.5
6.8
0.0
18.1
9.5
3 6.3
l6 .6
4 0.9
IS.6
21.4
9.0
39.2
18.1
7 2.7
Co •6
79.5
r 7s.S
7.3
3.1
2.1
3 •8
13 .4
11 .5
2.8
6.11
<->•O
!~
24.3
23.1
5.6
6.1
11.5
O £t a
9
rr«o
t—*u
^
14 •1
no o
11.5
10.3
16.C
6.9
10.7
3.5
3.0
1A .O
17 .3
r
?
iOO
•o
0.0
L
7.5
75.6
6.9
80 . 0
3o •3
3 . 1 1 65 •9
14.2
55.1
59.6
10.7
|----- [ 20.0
50 .0
80.4
84 .2
76".!
61.2
59.61
......... H
•
- -■-)
4 6 . 2j
TABLE XVI
- PART A
BU R STING S T R E N G T H OF F A B R I C S BEFORE A N D A F TER A G I N G
Fabric
Number
Pure Dye
Silk
T
A'
A
1
F
./el-h'tc'd'
Silk
G
II
iayons
A
B
C
D
E
Gylon
It
Cotton
O AToT
SAT
SBTJ
SBT
Dry
Bu r s t i n g
Strength
Before
Ag i n g
Dry Bursting I Stren;~th
A f te:c Accelq srated iging
So
40
6o
loo
Hours
Hours
Hours
Hours
112.9
99.6
s6 •i
99.2
94.6
8S.0
103 •6
90.3
^2.7
55.4
62.2
57.6
58.7
46.1
64.1
o4 .8
52.0
120.7
103.1
103.8
91.9
D r y B tur sting
S trengtl 1 After
Natural L Aging
~T5 '
Weeks
Weeks
102.9
100.0
90.6
76.6
■t t .t '' ^ 5 7 1
86.7
9 0 . S”
53 •9
30.3
T314'
40.3
19.3
41.4
32.0
39.7
19.6
23.6
86.2
95 . 6
99". 6
61.2
"74.6
73.0
86.7
78.1
49.4
52 .4
105.6
96.3
84.0
53.2
73.1
96.0
99.0
3 2.5
87.2
' S5.2
84.9
99.0
91.9
101.3
72.4
85.1
132.0
122.7
111.7
94.1
74.6
51.1
46.7
69.5
"72.3
49.2
34.
65.4
71.3
4 7.3
“ 5SYS"~
65 •9
66 •1
47.3
31.6
60.9
66.1
" '57.'4' 1
Io7.9
6
48.6
61.0
63 •1
X
X
X
X
59.7
74.4
62 •3
5 5 •6
4TT.T"
30.3
X
X
X
..2L J
1 3 2
TABLE XVI - PART A
Eabric
Harioer
V.ret
Bursting
Strength
Before
. Aging
(Continued)
’.Vet Bursting Strength
After Accelerated Aging
20
40
60
loo
Hours
Hours
Hours
Hours
V/et Bursting
Strength After
Hatural Aging
22
24
Weeks
Weeks
Pure Dye
Silk
K
L
F
./sighted
Silk
G
IT
P.ayons
A
B
C
D
E
By Ion
X%
Cotton
SAU
SAT
SBU
S3T
112,9
33.0
68,1
53.2
63.2
69 •0
55.4
62.2
36.9
120.7
167.3
39.0
50.2
39.4
49.4
32.5
47.6
37.2
52,3
45,6
39.2
46.4
132.0
100.4
51.1
46.7
69.5
72.8
57.4
21.2
67.0
"72.4
37.9
43.2
51.3
33 •S
37.9
69.3
32.9
56.6
49.2
49.1
57.9
4o • 4
■4Tj'.7 1
26.9
30.3
5276
25.1
25.1
13.9
19.7
25.4
23.4
8.7
15.2
42.2
30.9
25.8
42.2
39.0
25.3
22.3
31.6
29.9
36 •1
36.4
36.6
18.7
15.2
20.0
3175”
32.4
90.2
84.3
60 .3
76.6
16.8
59.1
24.2
63.0
60.4
58.4
24.2
56.2
56.7
53 • O
2Y.9
56.2
61.2
47.2
64.2
52.6"
41.6
44.3
26 .3
37.2
X
X
X
X
X
X
X
X
132
TABLE XVI - PART B
PER CENT ABE LOSS III BURSTING STRENGTH AFTER AGING
Fabric
Number
Pure Dye
Silk
K
L
F
Wei Elated
Silk
G
II
Rayons
A
B
C
D
JLLt
Pert:entage Loss in Dry
Bur s ting Str■ength After
Ac?celerat ed Aging
So
40
60
100
Hours
Hours
Hours
Hours
12.1
4.4
0.1
8.2
8.2
3.9
5.6
14.5
3.6
F.l
_
Percentage Loss in
Dry Bursting Strength.
After Natural Aging
12
24
Weeks
Weeks
11.4
22.6
48.8
23.2
8.8
38. S
28.8
25.8
54.4
16.7
13.0
37.1
16.4
64.2
"33T3-
42.2
36.1
64.7
62.1
17.9
23.5
35.3
19 .6
2 1 .1
40.1
39 .2
12.5
10.2
15.1
55 •5
16.1
50.5
31.0
3*7.0
55 •3
45.6
27.2
77.0
11.2
3.2
2.6
0.9
2.3
25.8
12.2
2.4 ""15.1"
7.0
15.3
28.7
43.4
3.7
25 .9
5.2
2 .O
7.4
16.9
5.1
9.2
7.4
35 •6
12.3
9.2
4.8
41.3
12 .2
15.3
c
0
H
f-1
r?".¥
8.8
9.0
18.9
N
Cotton
SAIT
SAT
SBU
S3T
X
X
X
X
X
X
X
X
133
TABLE XVI
Fabric
Number
Pure Dye
Silk
K
L
F
W eighted
o
o ln
l Ev
Gr
II
Rayons
A
B
C
D
E
Xylon
C otton
SATJ
SAT
SBU
SBT
- PART B (Continued)
P ercen t a g e Loss m Wet
Bursting Strength After
Accelerated Aging
20
40
60
100
Hours
Hours
Hours
Hours
P e r c entage Loss in
Wet Bur s t i n g S t r ength
A f ter N a t u r a l A g ing
12
24
Weeks
Weeks
1.6
13.7
2.8
20.2
18.8
30.7
17.0
S6.8
43.1
27.0
35.1
52.6
35.9
lS.3
42 .6
44.4
S4.6
57.9
12.0
11.5
29.7
21.1
41.7
30.*7
67.7
51.4
41.0
4S.3
79.8
62.2
7.0
14.1
5.3
3.9
4.S
21.8
30. &
IS.6
14 . 7
5.6
42.7
43.7
19.1
10.8
20.7
53.1
51.4
40.0
35.0
26.6
17.9
42.7
28 .9
16.5
22.1
65.3
66.8
6l •6
25.0
36.1
7.5
16.4
21 .9
44.1
29 .0
84.4
1.5
44.7
8.9
6.5
4.6
36.9
14.4
SO.9
3.3
36.9
20.9
SB".'7'
6.1
53.3
23.6"
19.9
X
X
X
X
X
X
X
....
X
134
TABLE XVII - PART A
THE INITIAL AND FINAL pH VALUES IN
THE RESPECTIVE FABRICS
1
{ Fabric
t Number
Pure Dye
Silk
K
L
F
..c iyhted
Silk
G
H
la yon
A
I- BC
y
D
•*-“1
J-i
Hylon
7
I*<
Cotton
SAU
SAT
SBU
| SBT
pH of
Original
Sample
pH After Accelerated Aging
20
40
60
100
Hours
Hours
Hours
Hours
pH AiH e r
Natura] L A^ing
12
§4
Weeks
Weeks
7.68
6.51
5.46
7.43
6.12
5.28
7.03
5.83
5.17
7.35
5.67
5.17
7.37
£.45
5.03
7.04
5 •56
4.45
7.15
4.29
4.13
7.18
8.56
7.14
8 . 63
7.10
8.55
6.96
8.46
7.24
3 •58
5.26
7.88
6 •50
7.71
5.46
7.10
6 . 60
5.96
5.91
4.71
6.88
6.43
5.44
5.47
4.94
6.71
6.57
5.28
5.30
4.90
6.82
6.36
5.24
5.27
5.14
'El'TT
6.16
5.60
5.45
4 .72
6.35
5.65
4 .59
4.55
3.85
5.30
3.91
3.25
3.38
6.02
6.10
6.52
6.67
6.53
4.93
3.62
6 .94
4. 50
6.18
6.19
6.85
4.60
5 •65
6.40 [
6.77
4.27
6.70
5.42
6 •68
4.81
5.61
4.28
6 .62
4.42
5.54
4.76
X
X
X
X
X
X
X
X
fabric
17umber
pH of
Original
Sample
Pure Dye
Silk
7. 08
17
6 .51
L
~
n
5.46
i'
..eljjlited
Silk
7.18
G
8.56
II
Rayons
5.46
A
"’^■.10--B
6 •6 0
C
5.96
D
5.91
E
iylon
0 •02
Cotton
O ATUt
6.94
4 .50
SAT
6.18
S3U
6.19
__
SBT
■*.T
U i i
Changes in pH Values After
Accelerated Ailing
40
20
60
100
Hcmrs
Hours
Hours
Hours
Cnarviej3 in pH
Values After
Natural L Armine
24
12
Weeks
Weeks
-0.25
-0.65
-0.33
— 0.39
-0.6S
-0.34
-0 .13 r -0.22- -0.29
-0.31
-1.03
-0.43
-0.64
-0.95
-1.01
-0.53
-2.22
— 1 •33
-0 .04
0 .07
-0. OS
0.06
-0.18
-1.92
-0.68
-0.68
-o.ol
-0.22
-0.10
-0.75
-0.22
-0.17
-0.52
— 0 .44
-0.52
-0.39
-0.03
-0. 60
-0. 61
-0.56
-0.28
-0 .30
-0.72
-0 •64
-0.74
-0.32
— 0 .33 " - O'."75
-0.75
-0.44
-1.37
-0.36
-6.46 -1.36
-1.61
-i.s6
-2.69
-2.71
-2 .53
0 .03
0. 50
0.65
-1.09
-2.40
-0 .09
0 .10
-o .2tT
-0.79
-0. 17
-0.26
0 . 4 7 H 0.31
-0.67
0. 52
- 0 .77 -1.21j
0.51
-0 .32
-0.08
-0.64
-1.43
-V"
X
X
X
-0.35
X
X
X
X
136
T A B L E X V I I I - PART A
TILE P E R C E N T A G E OF W A T E R - S O L U B L E NITROGEN E X T R A C T E D
F R O M THE SILK F A B R ICS BEF O R E AND AFTER AGING
T b A S E D OH THE Y/ETGHT OF PURE SILK
F I B R O I N "IN E A C H FABRICf)
Fabric
Humber
Pure Dye
Silk
K
L
F
Weighted
Silk
G
H
Nylon
N
Unaged
Sample
4.44
4.42
1.1V
Per centage of NatezrSolu'ble N i t r o g e n A1?ter
Ac c e l erated Aginr r
20
40
60
loo
Hours
Hours
Hours
Hours
Percent age of
V/ater-S oluble
Nitroge n Alter
Natural Aging
12
24
Weeks
Weeks
2.33
6 •09
1.48
2.69
4 . VO
1.64
5.15
4.09
£>".63“
4 .29
4.13
1.66
4.53
3.96
12 . 0 6
4 .99
7.40
5 •92
2.91
2.31
' 4'.'S'V ' ‘ 3.70
4.11
3. §8
3.31
3.6s
5.23
6 .21
1.41
4.06
1.26
12 .42
2. S3
2.37
3.25
2.75
9.96
7.12
5.23
137
T A BLE XVIII - PART B
CHANGES IN THE P E R C ENTAGE OF W A T E R - S O L U B L E
N I T R O G E N E X T R A C T E D F R O M THE S I L K FABRICS
BEP ORE AND A F T E J T a G I N G
Fabric
Number
Unaged
Sample
Change in Percentage of
Water-Soluble Nitrogen
After Accelerated Aging
60
100
2o
40
Hours
Hours
Hours
Hours
Change in
Percentage of
Water-Soluble
Ni t r o g en After
Natural Aging
24
12
Weeks
Weeks
Pure Dye
Silk
T.U
L
F
'.Veighted
Silk
G
H
Nylon
T
X\*T
4 .44
-t
1".T7'
0.71
-0.33
o.'Si"]" ’o'.'ST" 1 .3d
-0.51
-0.24
O.T?
0.09
-0.46
10.89
0 •55
2.96
4 .75
-1.56
-1.75
T 7 5 Y ~ 0.23
2 •31
4VSY
0.60
-0.37
1.80
-0.69
1.00
-0.89
2.92
1.64
-0.90
-0.5Y
-1.05
7.85
5.23
-2.35
-2.36
-1.98
-2.43
4.73
1.39
138
T A B LE X I X - P ART A
F L U I D I T Y OF CUP R AI.fl.TONTUU-C E L LULO S E SOLUTION OF R A Y O N
F A B R I C S BEFORE A N D A F TER AGING
Number*
Fluidity
in Hhes
oT Una^ed.
Sample
Rayons
A
B
C
D
E
13.54
10.52
12.60
24.09
20.45
Fabric
Fluidity In Rhies A f ter
Accelerated Agin,O'
20
40
60
loo
Hours Hours
Hours Hours
Fluidity in
Rh.es Arter
Natural Aging
12
24
Weeks
Weeks
14.41
13.63
17.30 18.78 17.29 15.76
21.37
IS.83 12.83 T2775 ' IS.98
20.24
T6‘.60 “t t :v s
IS. 50 IS.31
14.79
S3.77 25.93 “ST. 97 23.50 ■25'.2'6' ' 15.73
S3.10 25.15 ■ S4.73 21.20 ^5 ."73
26.47
TABLE X I X - PART B
CHANGE IN F L U I D I T Y OF CUPRATY'OITIUII-CELLULOSE SOLUTION
OF R A Y O N FABRICS A F T E R A G I N G TREATMENTS
Fabric
Number
Rayons
A
B
C
D
E
Fluidity
in R ’
n es
oT U n a g e d
Sample
13.54
Change in F l u i d i t y A r t e r
A c c e l e r a t e d A g ing
Treatm e n t s
20
46
60
100
Hours
Hours
Hours
Hours
0.87
~ "16".'5'2' “ ' ' '2 .36
12.60
24.69
“ ” 26.'4'5' —
-1.14
-0.32
2.65
3.76
2 .31
-2.00
1.84
4.73
5.24
2.31
-0.83
0.88
4.28
3.75
2.22
-0.10
-0.56
" 0.75"'
Change In
F l u i d i t y Arter
Natural Aging
12
24
Weeks
Weeks
2.22
2.45
-0 .09
7.83
9'.72
2.16
l.ll
-8.36
5.28
6.62
DRY
6
PURE-DYE
WET-6TRENGTH
T R E N G 1H
g a in
PERCE HTAOl
PERCENTAGE • L 0 6 6 - IN • bRE AKING -6 TRENGTH OF
6IL K -J N Y L O N -F A b R IC b
■
JS
‘ -X ~ -
•
i V
s
*>
• L06^
\
0
\\ \
v *'
\ v
V'
\
\
\
PERCENTAGE
to
x 5*
to
L ...-J,,,
20
40
60
20
Figure 33
40
<cQ
100
H 0 U A 6 -A G E P
•The Key to the fabrics in Figures 33 to 53 is found in Table XIV-A, page 121.
139
HOURA-AGED
100
gain
DRY S T R E N G T H
W ET 6TRENGTH
C -
10 '
• LO66
20
PERCENTAGE
PERCf MTA
P E R C E N T A G E L 0 6 6 ID • bREAKING"t>TRENGTH
OF W EIG HTED £I LK - F A b M C b
*
3040bO GO -
70 6o9 oL
20
40
SO
20
100
40
60
Figure 34
140
H O U R b'A G E D
H0UR6 AGED
100
gain
10
6TRENGTH
W ET 6TRENGTH
DRY S T R E N G T H
-
0 -
»—
10 -
ui
20 -
304050 -
50-
RCEMTAGE
•L O
66
20 -
70 -
(J 70
PE
PERCENTAGE
P E R C E N T A G E L 0 6 6 - IN • b R E A K l N G
• OF- M Y O N F A e > R \C * >
80-
uJ
CL 80
60 -
ui
90*-
20
40
GO
20
100
40
GO
Figure 35
141
HOURb-AGED
H0UR6 AGED
100
PERCENTAGE L066- IN - DRV &UR6TING 6TREHGTH • OF
PURE- DYE 6ILK < NYLON FAfcfM O
10
ui
MMUfUL* A G IttG
A C C E L E R A T E D -A G I M G
2h ?» 5
lU
0-
15
>0
>0 3o
^
«*L
-
0
^
45
oV/ *
<
*—
ZZ t®
lU
U
aL ii>
UJ
CL
zo
40
(rO
24
1*2
Figure 36
WEEK6 AGED
142
HO'JRA-AGE.D
lOO
• PERCENTAGE L 0 6 ^ N \V n - b U R 6 T I N G STRENGTH
• OF • P URE • DYE• 6ILK- 4 NYLON FA&R1C*>
ACCELERATED AGING
90
20
40
60
iOO
17
H0UR.6-AGED
WEEK6 AGED
143
Figure 3V
PEKCEM TKGE • lObb- IN DRV b U R 6 T IN G •
6TRENGTH OF WE1GHTED-61LK F A & M C 6 -
ACCELERATED AGING
NATURAL A G I N G
*
40
&0
100
*-
12
2
Figure 38
144
WEEK6 AGED
HOU^-AGED
+
PERCENTAGE- L 0 5 6 IH WET &UR6TIMG 6TREMGTH OF
W E IG H T E D -6IL K F A bR \C *>
dJ
ACCELERATED AG IMG
Hi
v
X
uj
90
ZO
40
GO
IOO
WEEK6 AGED
Figure 39
145
H0UR.6 AGED
24-
12
•PE RCENTAGE- L 0 6 6 - IN DRV- £>UR6TIMG
• i>Tf\EnGTH• O f • KKVOH- F A b R I C t v
\Q
aJ
A CCELERATED A GING
H Z
r- 4
15'
0\
o
tU
Cl
NATURAL A G I N G
________
b
\
XNN >
;5
\
-
r\
'•14 *
3o
n
»
P-- X —
>
UJ
n 45
V—
7~
N > «
»
<
6
*
Uj
u
aL
75
UJ
a.
GO ______ 1
______ 1______ I______L— .... . . _...
20
40
GO
.1. ------ • .
--- 1-----
'2
iOO
H0UR6 AGLD
WEEK6 AGED
146
Figure 40
24-
PERCENTAGE.- LOW j -IH WET- bURbTING- 6TRENGTH
OP- M Y O N - F A blM C -b* ' ;N ,■'
h iv
h.
h
A
D
/ -J
E
b
4
\x - r / * X'
147
Pisure 41
CHANGE.
C H M i G E IM • PH•VALUE'?-OF- PU P^D Y E-6ILK $ NYLON FAbMCb-
Figure 42
- CKAftGE-m- pH VALUE6 OF WEIGHTED- 6ILK- FAbMCb-
ACCELERATED- AG IMG
at
H-CHANGE-
0.0
-0 .5
-
1.5
Cu
-
2.0
40
GO
H0UK6AGED
100
24-
12
Figure 43
WEEK6 AGED
149
20
C H A N G M N - P H V A I U E 6 0 F- K A V O N - F A D M C b - - - - - ' '"■■ ..... .
—... —~
ACCELERATED AGING
NATURAL- A G I N G
0-5 0.0.
(?H.- C H A N G E !
*0*5 -|.o -
\
- 1.5 -
-
A
-70-
-25-
11
20
1
1 Ml11 - .... „ ., ■ j M. .. ■■....... . —.. „„„„ i - ■■■■■■—
GO
100
!2
24
H0U IL6 AGED Figure 44
WEEK6 AGED
40
h
8
CH AMGE Ih THE. PERCEMTAGEOFAVATEt- 60LUE>LE MITKOGLM
m
CHANGE
•
EXTRACTED FROM PURE-DYE'6ILK
2-0
PERCENTAGE
-
00
20
4.0
-
'7
Figure 45
NYLON FAE?R\Ct>-
CM A MG E IN-THE-PERCEMTAGE OF ■WATER.-6 0 LU&LE
NITROGEN EXTRACTED FROM W EIGHTED 6ILK FA frR IC O
PERCLMTAGF
CHAtiG E.
ACCELERATED AGING
NATURAL A G I N G
-40
oo
8.0
100
40
GO
100
H O U R 6 AGED
24-
n
WEEK6 AGED
Figure 46
152
20
C H A N G E -111-F L U ID IT Y -O F C U P R A M M O N I U M * C E L L U L 0 6 E 60LUTI0N-0F-RAYON- F A & M C 5 ACCELERATED-AGIN o
NATURAL- AGIN
o
-15
in K H E 6
-10
• CHANGE
-5
5
10
15
20
40
GO
H 0UR .6 A G E D
n
100
24-
WEEK6
Figure 47
AGED
154
Iley to Pipures
S o l i d lines
indicate
D o t t e d lines
(A)
indicates
48 to 56
dry s t r e n g t h tests;
indicate wet
tests
s t r e n g t h tests
on samples
subjected
to a c c e l e r a t e d aging tests;
(IT) I n d i c a t e s tests
on samples
to nature. 1 aging tests .
and
su b j e c t e d
PERCE HTAGf CMAHGE.
^
..i
j ,1. J rv
PERCENTAGE
CMAHGE
*
KJ — - O c o — - K)
Prt
o
tr O
ji o
i> o
PER- f 1 ’AGE
>
1,1 o
G
55 o ® c o
■nO
CP>
30
■?
3
0^
"o
r
>
n
«
<
PERCENTAGE CHANGE.
Ji * ^ r 0 r
0-*
O3
'3
f1
^
o in o S' o *J'ow>o
PERCENTAGE
y« ^HANGE
‘
j
K j -*_ 1
o o o - r w^«
o^oi j i o O i OT"T
^o
"TT
f"T"T
PERCENTAGE
*
* j
*
» *
<
O O O O 000°
0c>
•*"
oo
155
PFRCEKTACf
pH C H A N G E
CHANGE.
PERCENTAGE
-iTiO>
o — - Si
«r O
J* O
ir,
PERCENTAGE
?o£»tisios
tfl O
OO
v
X
r
rn _
f<
£
a
r^
-■I
z
0 %
>
H*
tO
T
J
K:.'r7*1TAGE CHANGE.
A. J. —
O - !>• |fc (J-
in (i 'J1 O (Jl O
5
pH C h a n g e
i * t *
K>T — O O
-r
O
T
i
"
. u
i
< i < i
OD'4
5M>i‘vl^ r
O O O O O O O O O
~
bJ ' oO o <> 6 ' ®b
T
"T*
T
PERCENTAGE
' E R C t *iTAG£
oo
O
—
T&2
»
c■
*
5;s
--- 2
f
tl-*
156
PifiCc.N’AGE .'-AMOt
j
*
F'E RC tN.lAv>F
^'t Kx fNTAC.t
O O O- ^ J
'
.f
t Jio ^ <
►j - ~
O
r»;r
.
x
>'
L
rn
O
f.-—
■
*
►t/
*•0
I*►
Figure
50
pH
LMAM<oE
>5
c?
V,** >
'J ^ > /
o U: r> ui O
0»
oo
n<
2
r?r
A
I®■J* n
"i--i
*
n
Jii
ml1
1
« I
// //
////
J*
tt<7
p p
v
r,
-0
^
r.
*i'Z
j
>
r
- c ^
3
D
0» ~
i G x*'"
r» u #
/]
//
/
/
% p *
F J IT
«
'
/
/
1
>
>
t
*x
I
157
i
T
*
x
O’
c
0>
3 v
'
O0
,
»
■•■
'/
ci
*
J
o
0
h
x I
i
'/ /J
*
o^ y / /
f5
*o x**:z > '>
*-«
n
»
pp
»
<
.o
A
PE flCENTAGE
oo -ii
> & Vf> r° oo oU
O O oo O oo
PERCFNTAGF
158
!e
so
A
-
VO
' •’ V i ^ r *v,»
M< ,
-of*-
V -p . *n
*■>T FV
A
.x, , - — . u . —
A
*
..,q
t
j
J
40
>
y\1J - Ac.Cc,t-A«t.
i .:
*; -4*:
p ‘ n;' t ni \ Cit lOt>*-> in
>*'
iMC* MRi M' j l H
;*o
f k.r* n. •o «o. b
ACX’
*.«p
*"A'> r>
40M
'9“|iCHuiA
U>
0*
m~
.
I!W»
-t
• =m t A'jt ;'
‘3 I
>
f
*.
^f.
A.tiu
an
.'
z -k.*
d f AG I o
:4ft« '
-
r* A *
C A fc^K
Ac c i*~ m ;;
J*V ->
H »
I
r
^a fesft ;
Y,
-
t L «. T p
r\ A T x . K i
-
r
1
- r -
-*-
.
’
V ;f
Figure 51
-i - •. .
! N•
.
‘
a
V£
l e f t 1
1
J
FLUIDITY
I *
Pr>
(wr
to
i , i
r 7 m
—
’ -no
\
1
. vp
y
j m
2
1
PC.
j
A
Z ii
o
X
n
v
J
iS
* H
<
i>-
3>
<X£O
<1
*
*
l ri
*
o in o y. O <J> O
I » F n " r i
lT O
i
PERCENTAGE
OB
o
-J
«.
O o O
*■
<J>
o o
*>
o
i
r P>
oo
Oo
-nf)
<?5
ft._
?? /y
'Om
2 3/
7
7i
o’r - °
r~
.
*
r*v +
- 203
o-n
n e
O
c
z
>
o
-
r o
H.
m
- O
-
! sQ
OO
J-1
H
o o —
M
>42n
c-n
O
" 1 1 1 1 “1 1 1 1
fO
0°
PERCENTAGE
pH CHANGE
CHANGE
no/
2.
?»
J- X
/
s
<p
s Z>
F l u i d i t y *CHANGE
1 11 1
o 31 c ^ 0 ^ o W 0
ii''
*5
-
;2
- ?D
s ^
r*\_*
>*x
11
'
0
0?
5 s !.
\>*
-*J r;
H
. <
m_
r)4
i
\
fV
\
A
'\ \
\ \
JP *
N
o
H
><x
S5-’
a &
X
*
•
Nj
A_
*0
■ *0
»>x
PERCENTAGE
i>> >
O O O - - ^
y o if O ^ o
T ! T 1 ! 1
00
o
*o
.*»> IV
o o
I
6
O O
00
■nO
■>x
;5
/
y
/
.?0 /
7
/
f
O^n
fw0
° 7
h
ix
9
2
1
\
\>
to
*X
* 1
2*
0M *—
13
o O
159
i
KiJ
A'
< -J
X1
/
I
PERCENTAGE
CHANGE
CO
11
►ax,
7V
>f-o
£
1
T
1
OO
I
►J
b
I
r>
-4 iw
r*
pp
* 1
- ^ o
1 T
160
0
o
10
A
-K'
K
s. ,
MUtfcRiMv. '.ratn (.t m
FftftRiC
•
>
2.* *»'
M O
E
*<> io_
>
AM
y
45
^4
t—
f. M <j ' .
—
..P
.w
E
f
i
<i
VAfuftAl C
*
I*,1
L;
J<■
i•*
••' H
_ J . ___
Mr
Figure 53
•»
C H A H G E in
VALUE6 O F C O T T O N 6 H I R J I N G F A b M C f ?
(^CCElE^EG
AG'.riG')
0.5
CH.A
hG,t
0.5
-
2.0
b E F O R E LAUnDEAMGAVITH
A CHLORINE blEACH
40
60
H0UR6 AGED
100
70
Figure 54
40
GO
HOURO AGED
100
161
20
A F T E R L A U N D E R I N G WITH
A CHLORINE b l E A C H
891
I D V i W S ^ a d
o
cn
CTa
T1
X-
01
01
r
o
O
Wi ^ 0 1
-J
CAT
U O l i O O i C O W m ^
o
OEi^iiiC
y
'.D
x OUlOtf • .’r . ^ r i G O V
PERCENTAGE L05t>
PERCENTAGE
GAIN
Eh
O
CIO
45
bo
15
45
30
J
0
o
yTZ
uJ
‘w 0
-7 5 ■ ^ f r c e n t a g e c h a n g e
R.NT inG 57 RE HG Th
-9o
A t* R i.
MO 5A J
M A T UR * l
4©
T ime ,
2
aged
-15
-bo
o -45
c£ -<#o
UJ
(X. - 75
-90
A-
la
0
<
H
5
V>
15
PEFACEnTAGE CM AMG t.
d 6UfcM IMG STRENGTH
F a b r i c
109 H r *
A cc t T
2.4 WK4
M
s o
<b a t
w s — is— t
ATUR A
lOOHr*
24 W K b
l
T
i m e
a
^j
l o
io
UJ
O 1.5
io
<r 0.5
rc
u o o
-O 5
2C -I o
n_
-I 5
TZ
-10
ACcEltTTF
2 r>
H ATUft
£ AGEP
-4 5
5o
t
20
Al
time
“to
.2
&AT
■fa
a o lr* .
&<■ l24
AGED
b^
ui
a
A
-ic
A
-90
J
TO
45
- \^
4£
'Cp ,'
76
ACCEL
NATU
IfeHf*
24 »IH*
pH C H A N G E
F A b M C NO
r t K C E N T AC, E
\ M
J R o T >N o
FAbRlC
ACCCTTtdo
N Atur 4 i o
20
T
r
40
- A
-"
75
-90
> i '-4
-4
-
-
6 6 0
' A G i r
- I 5
PE RCEW TAlj c M A N G l
iN e>UR.5Ti S6 ^ TAEHCi TH
FAbR.^ NO A r
ACC EC1 ftTT> r>
i'
*■IH r*.
*;— 4o
1 ~
.-X VJk
CH A N G E
GO
5
o
uJ 5
U -45
tC -(*o
i r ft. E N . '
MP
i m e
<c
y-
\
K.S.
N ATOA.AL
T IM E
i
AC £ z
2 o
o
c
l5
IO
O 5
rt o o
U-0 6
o 5
-I 0
43- - |5
-2 0
-C- ^
4o
I2
Tl M E
C « 0 I Otf H r *
2 4 Wics
pW C H A N G E
FA b M C
ACCtL'R rr o
NATuaau
A G ED
Figure 56
NO b A T
io
°
TIME
11,-1
r e»
2 4 W K*
AuEP
164
S I O 17
O F
F I il D -L i, V O
/O t:SXV;T’nrf T07 7 OF FA'-'HTOS
T'le cons t rr,c t Ion
study,
na'oo
o.
4-
'
ie
a: v/ns ctntcc* earli e r ,
need
are r i v e n
In Pant
IX o:
in Table XIV
■ne
on
101 a n d 122.
V/o :l lit of Falir.'.cs
*.r-
die
no*
study.
yard.
, t m
One
da
1T*0
ri*o::i 1.67
rlcr,^ vaoi h i n -• 2.67 ounces
s ilk
UK:
1■:an c■
S
per s enure
square
j-
touu,
Xno
yan-X.
t/
naraiiny
a v ion
ru.Onle
sill: n a n ~n , vaei -hin;* 1 . 4 5 ounces
sauo.ro yana
b o a vo
All
lac
an
T.n this i»aru'c
nan
»
f a b n ’cs v/oro t 'io 11 ■dotes t
to
acs vncst u s e d
to 6 « C 0 ounces
vae.l ait c cl r:1lk In bn 1.o r van s
rune
non
a a r a.c r» v;eno tno
X A o y rai ;ec f r o a 5 . 4 5
aac; one vans XI
1:10
ra;on
excont
ro ;a‘rf v
sureo
iur.' cs v/ert o
of
turce f a b r i c s
in e
'be tnrc a f
count;
o I ’’.ybnle;
■ole. in vacavo.
v/ns o of a f M v u - s d a l t
Fount
o
Fabr
•>
/*»
scitla w e a v e
165
bon-fibrors
The
perc o n t a r o
f o und
in the pure
tions
set np b y
tills
type •
h a t e r i a l in f a b r i c s
of non-:'" brous
dye
material
or woi■"litinf
s illr fabrics was w i t h i n trie r e g u l a ­
the f e d e r a l Tra d e Co m m i s s i on for fabrics
The two wc 1 .htcd s ills fabrics
of
h a d 66.55 and 5 1 . CO
more onto- os of nor -- f ibro’*s m a t e r 1 a 1, r c s n o c t l v e l y .
Y n r r. C o n sr ? n c Lion of j’abr 1 c
Aid
yams
of the fabrics m a d e
\/l Lh an S twist.
s l i p h t l y h 'phor twist
direction.
Laineh on ?.y the
Lrrris nor
tw’
*sL"<'
fibers
I'ho r a y o n fabrics
in the w a r p
Too n y l o n fabric
w a re^ d i r e c t i o n
of syn t h e t i c
ah an ’.:e” e the
contained
contained a
d i r e c t i o n than the
fillin-p
was more nijiily twist,eel in the
I'pyonc
.
o
Tno 5:11]' ^abrics con-
s o - c o i n e d n.nirirai tv/ 1st,
er t ;iree ta five
Inch in t,he ware dal recti o n , br.t the'’ wc.ro hi'-hly
in t :io f i 11 in.,; direction.
All
o f the
syi.thellc y a r n s were made
eer warn;
i,
r the s ilk f a b r i c s ran. ’ed from two
per yarn.
of a sir ;le t h read
to four t r e a d s
Tee filui.icnts per y a r n s h o w e d a wide
■ ore
was
yams
t1'.an in those
ranpc •
a s 13 ihtly hi tier n u m b e v» of f t i n m e n t s in the r a y o n
~ wo la lit
of the
other f i b e r s , as mi ht be o :cp ‘.etc d
or i"on .arc ,-a rd •
166
Peril or*
f :re ticnier of tI 10 sill: and r a y o n fab r i c s
;:.?ncrally a c c e p t e d for this type
1
—
the ranyc
-s i n t e r e s t In. ; t o n o t e
that
Is nucli lower t h a n t hat
"J>j r g T ■T rn C
Palls v/itlin
of fabrics •
It
the d e n i e r for the n y l o n y a m s
for* tl.c r a y o n yarns.
PT1
;ror.'th desv.lt s
I’de r s n l Ls of ado
tests
for broanln/; s t r a n p t h i l l u s ­
trate c'. Ir. I'l. ;.iros do to db sl.ov; the r m e
vac
s' '.own by tbo brealciri ;; s tron;;tiv tost
t r r cl is eorc
'jnr.ee all
evident
of toe
in tlis
Ir
part of
nil ft love lira' of V o ' '
In ail
cases,
'id t.
lose
the s tudy be-
too v/ct i.-reniiin-
L : s n l fu. a we t
In s Lron pL d •d ml.. . t _o
a f ter the G O - l o s r period.
s b r e n p t h si lowed .r e n t e r
ury I'reel: In / sen o?i;;th valves.
d” ra ti.a; h i r e n ' t h
^
in
of aac^j e r --Lon s.pi u p , w i t h a
h.o Josses
.C.
This
e a r r l e a :io to t lie
con; -oc olon thus, v.dn .n i;ho "fabrics were
.'or* 1 od i ron 10 to GO hours
I.
Is par 11 cular ly si pnlf leant
eu. .1 tl m , t ..ere we. r, a decided
idem
In Part
Pabr les in id.is case wore
1,-ju-hor.r a :Ln;_; p e r i o d .
ills
sec o n d
d o w n w a r d trend, as
..email; s
r.. • ? •.•. .r.•
*
d —
.n ►
’ ..
-J
w -.
O/
’
<,-O1- f
loan:
167
ill;
41,
*o
co
:iov;evcr
■ii.ose o;
no level in-'
str*«
on
irve
o.
tm
oso
o 1 o i o::o
0O
o-
ovm
a
1 0 S i
o'
.o
./c t
b re a i:irr
.0X0 Lias seen ore oared
o:
.o
oo
’
.re-1
strcrrth .
icr*;4 shaoe be Inn more n e a r l y comrara-
.e
::o
breal::
ma
lo.
o:
1 rateci a-;iny
nr u c e
1c
111;
,-ra-
60
L11 lie
of 1} .o cases v M ’ilc! ;■;1 v o
of
of
loo
aco
iion:
a o or ox
ai
o:
:ie
is
.1
oc
cm
.;o o erxo
-O
) v.':
;toe •o’9 a longer
ue no o * c ar
.ar
c:
o
tr- i
.e11
t-
.ce.Lcr
~.n
n
a
ocr.
1 o :•
o me v;
■1m
.c .
1--L
ca
a f‘t •
mi
o:.
tban
100
ic 10L
.Cl
1os
o.
xir.
V/‘X o
c
na
o.e
.1
J.n
-ion]
.1;'-m o -r*
m
c
o
.rim accurate
Mo
n
c u:
i.c
o onor
o. .n
X.C
O’
■^i
yurc
Lie lOO-bonr
c
:O
mc:v li
ion o:
C.
1
ru
-.
i i4.t.'
J-t
/"
.
.«
-r p o
fcJwa.J- L.1. O ^
'
F
.
a ':i ’
v.t f
Co a a
■ or .’ •
a
;:a
vo
*• p:
o:
;i oinsFvov::-; s'TOA'i'T*7)
—V
7,*;
,1
~..’
.Aa.Lion
*i>*■_*.r f
_r»l
_ ,
T
"C’
"“’“
'TT_ ’
c•
rci
:.'V^T
•i, .ui'
cc eT
o:;i'>arable
of
12
oc
A atv.1*0.1
in,
>100
ev
10
45
To
10 O')
1-i P
70
or
100
O’
01.1'
90
our
1 on
Streiv'ti
fT,
oar
>100
> 1 0 0 Ho
169
o
hand,
would net be satisfactory,
.
o o’iIt::
’ .lures -it, id, and 44 biov: the ros'i.l Lc of t'10 dcter.:ination ol' two p.. cl vuijes ‘.;hicli wave oc c'.irrcu In pure dye
s lie aeid n y l o n , v/ei;;.:Lod cl 11: ,
ly.
Aryin,
and rayon f a b r i c s , rocpcctivc*
o.c In Part I, clie chay;oa w h i c h have occurred
in pi' value (levin . the a cco lcrubc 1 aeine poriod are of r e l a ­
tively low na -;nltude, al tf.iouyh there
drop in pl: in most c a s e s .
(fabric
0 )
,
ic a sllyht but gradual
In one wol.nitcc. cill: fabric
l:ov;ever, there was a si I lit rise in pH with
accelerated a i r y .
Tne amount of chanye w h ic h occurred
far in ■ natural ox ' i n vow-., '.on the whole,
greater t'o.an that
c ourr-..- 1 'he hex • ac cel. ore tod a in. , as can bo s -eon. iron
which
o'c s t cun or r lope of the curves
llius tratiir ; Li .oc e losses.
\ a t c r - S o l u b l c hi tro'*cn Ch.rn.-oc
who -re r-*1 t r. • 7 s' v
sllb and nylon falee.es,
t’.
ros f h :
her the bro.uhir
be tor:* or- -tlon
.
s':.-, own in Hi v r e s
obtained in Part I.
wore wee such t’ at this
•■>. .
‘
t c r t c for water-s oluble nltro ;en of
fho
It and 46,
verify
chan os which occurred
1:cst could be used as a. substitute
r,tr ■o. •th rest f "-v fater: l a i n ; the amount o:
■lew lias rce- -rred lie a s ilk fabric »r
flee v:r tor-: oluble r !.trc on eu brae table
‘■har ;r> or 1:• c "urc e y
sill: becaec l.cr
*.r.s toad
free one di.sa f 'raatcv, a:
170
that,
In nylon,
become decidedly
jrcater v/itri ayiny.
bith.
the oc cxcc 'vti'nr,, 1; :.c discussion of* this iactor as "iven In
J. lc no 11 cable •
Viscosity,
or fluidItv Chanye:
fhc clianycs vmich have occurred in cuyra^irsoniuri solutions
oi the rayon fabrics after a inn, 7i;yrc 47, v; ere too
snail to
aeoent
1)0
of si ■••n:iftcanoe as a sole
test dor ;jnc 'inj the
af breed/down vf.lich fas occurred
structure.
One
el due collulo s o ace case fabrics increased
sliyhtly in fluidity,
r a 7'onc, whereas
in the cellulose
in co:.tnn with all of the viscose
one acetate fabric became less fluid v/itli
increased a ;i:y.
i’ao Intor-rcliafionshio o f Di f f eront
'Jcso"s bn Gcs'aratTj f a b r T c :
\* ’.j
--j-
too s t u d y ,
»J » /
1 on
> ■_
..
•. i.
- u—
In t ‘ic. second .cart, h o w e v e r , it './as yossiblc to
•'■o’
i
' v/r.s n o t
V.rv *r
.. .
Ij .J *
■ e> , .O j.
;,:o i’abr 'c , as v;° s •1 >a•- in P,,T,t I of
'•crforn all o f the tests
._
..
..
li.uitod
on each fabric because
as in itar t _.
the a. ’
.sunt
h e n c e , the
•cs .1L s inon w h i c h f'n corv s were fo.sni was
:-:y 1 >•to
.11 rc s. )c c t s .
In
■/las
cl .* to
of o' '
co'roat":- t h e
ir: i,c o-r- 1 .h; io n s f T
:• I.>r ••• '’1' I;•- • .o -o ' 1 ■
c' v. steal "
-'v' toe r
r-*•-
■
171
r.iade on tine fabrics
before and after a ;in;;, a comparative
table v :a e clravni no slallar
to t'ie one arecontee
in rant I.
: ■ r. 1 lilarity were tabvlatc d, ant t.;re pcrco: .ta ;e
or
tno carves were
lab ret! slrl 1a? was ca.lov.ln ted #
172
'rA-.L:; :a :t
•‘T r]
j--; "1
O' Ic
<i
-'
-ju
o
—
3 u r g t ,:v*
S br*c:: "tin
(Accolc r*a t c ci)
c. c 1
pH
(Accel­
erated)
Dr
Tcaian'
-M
7.5
10.0
0.0
1:'
0.0
1C).0
o
•o
3113?g t i:v;
o:v"th
tural)
(Ap c.n 1 -
■o.1
r* r
O
172a
TAVLD XXI
ALL
(' ;ature.l )
i
14 .o
oC .1
::;r a l
.'ater - S o 1 a b 2.c
.,
r1 tpn-e n
(Silks)
(Accelerat ed)
Order' of
Ida -nl tude
of ciraj."o
too snail
for p r a c ­
tical 10SC
c
l > 1.
.L
, - t -r~r
X i ...
Lis
V;ater-Soluble
A ]tro"on
(Silks)
(I,‘a t o r a l )
Order of
i.Iaonitudc
of c?.an;';o
too snail
for p r a c ­
tical 11so
D 1 tto
D 11t o
T 1-- •
—
Vis e osIty
(Rayons)
(A.c cclera ted)
Order of
Ida pi 1 tude
■ f c'.ian. 'e
too s rail
for p r a c ­
tical use
Ditto
D 111 o
"Order- of”
Vsc 'iii tude
of ckanpo
too snail
r*r - y r,u a q »
tlcal use
Ditto
Ditto
D:; t to
u ...uLu
!)j.o uO
Ditto
Dio to
1 Uto
j.!. tto
:
Ttto
31 tto
Ditto
Ditto
D 11 o
Ditto
-
-a.•
„
.
..j
L-..C
T)1tto
D 111 o
Ditto
Ditto
Ditto
4. n
5o .c
____ ditto______
Ditto
21 .0
47 .G
“ • 4-4.
ditto
!)
J
Viscosity
(R a y o s G )
(n a t u r a l )
-----------
-
-
-
-
-
~
-
4
175
A.,:;ain, the strength teats showed a hiph puaoeuta^c of
illarif y wiuiiin t lienisei v e s , although the results of tiie
broa. :irw; s^rcnyLh s h o w e d very little similarity to any
or oho otlaer carves, ciilofly because of the drastic loss Incrc accs up to GO h o u r s , and
los s after that period.
the sonev.uat lower- increases in
The percentage of similarity for
the strength curves ranged, as hi^'h as 81.0 per cent,
c1m ec cases,
11tvrely,
in
wet burstinp strength after accelerated
a '1n" ac c o.-iparcd with both wet c: iG br»y iwrctlre’ ctrer/'ths
QP..'.,**
C
w'er
a-
natural a ;,inp., arc! dry hursvlw; otrc'tfth after natural
as eenparee wltie v/ot strenptn after natural a;inp.
Till s world resort.icnd burst In / strength as a criterion of
s tr e-rth losses,
because
trio results of natural and art if i-
e 1 a 1 a -in •• arc hi;hly or- tilar •
There was not muc h similarivy shown setween the
3 o oupth Lest ch-Ci.il es and pu char. :cc after a.ccclorated a'pin-';
1- L t ore was a "'air do prec
-> C
s lw.il uri ty between she
a tr e njt h t c st s , p a r t icu lar1y b ur s t in p s t r e n r:th, and the p 11
o i;.rves after natural apln
he suits of Tests
on Cotton Si .irtin-*
was stated earlier in tills study,
the cotton shirt-
included hoc actso it was hnuvn to ’ avo
a cue : '.al
4
174
laundered by the usual laundry procedure us in a a chlorine
bleach.
A shirtiny fabric of similar construetion,
but wit li­
eu I tr.e finish was studied for c o m a r a t 1 ve n u r o o s e s , as has
been mentioned.
A comparison of the ror'ltf; of the bur r.tin j strength.
'tost used on these two fabrics before and after laundering
is shown in ft u.ro hi.
foe looses .after iO 1lours of a mi nr;
were s 1 lyht f-'r b o t h the- ibi.r’:ei and v.n:?inis I:cd fabric before Imr.deeir'.
'f.rev. ;hout ine ra.ii,ye of accelerated a .piny
periods of time.
After 1 auric,erainy, on trio other hand,
the
loss after 20 lours
of a^irr; was considerably yrentor for
the fin is: icil fabric
than was oaoas iciicd by 10G ho'irs before
Irrndo r i m p , w i t h no si .rilfleant eh an po at the 40- and G0i.cur p rieds,
20 fears,
ed
i it a s l i t it 1;/ ,r*;.st::r loss at 100 tours.
for
a ].c,th.o .1-e s in dry sbrenyth of tlic launder­
"! ' h • : •- ..-' c was
losses v.ere
At
-i.t ’ and
2b. fy ,
ll.dh
.o vcas after 100 hours these
, re spec iIvc-ly.
losses were not sho w n by the m f i n i s h e d
Similar drastic
Inn; cere'1 cotton
fabric.
ihls
fin dim. , is in conformity with actual erree rien.ee
will, this fabric,
•iodors.tr: amounts
which has boon shown in use to lose only
of stror.pi. i m u l l
laundered with c’d o r i n o
hioacd', aft ^-r w' 1 eh tl ic su.bs eyicnt a :in;; has caused sycedy
nid severe s trer. tb 1.o r.s o n .
It has been postulate d that a
<
175
cor.ipou.nd m a y have been forme7 between the chlorine and the
synthetic resinous finish, on the shirtinj w hich has a di sinteyraein* effect upon cotton.
'the p h curves show t.iat tic fabric which had the special
f inish showed a rise in pi! v a l u e , or it became more alkaline,
while the unfinished fabric
value.
showed a continually lower oil
ih'c finish, t h e r e f o r e , caused the fabric to perform
differently from cellulose alone in pli chan ;;c w i t h die intopratiny.
hh.cn the curves for the bursting strenrth and ph values
wore praphed in .jurtaposi tion for the cotton fabrics,
curves for each fabric
showed somewhat similar trends,
thoumh the"
\J were not so similar for the finished
for the unfinished cotton u m m l e .
the
al-
sample
as
i-
i
1 76
Y A B Y
x
wore recommended by Appel and Joe sup
(
) seem desirable if
t c resnlIs o f natural aGin;; for reasonable oeriods of tine
are to be simulated •
liven longer tires than w e r e
in tnc first part of the. study seem desirable;
indicated
100
hours of
accelerated aginy under tine conditions of the tost seen to
be a ni nil.urn tine r o c o u icndablo if the poa.1 of precictinr;
perfomancc
during a reasonable period of use is achieved,
b’he time of a. ain 3 nii.pht be reduce cl by carryinp on the test
in an at nosphere of oxyjen,
commercial practice
a .in
ti
as is done in sono
instances in
in tectiny the resistance *of leather to
a dr. ; tlue for which manorial be in ; corpora sively
<
s 1 ov;.
f u r s I;in; I s t r o n p e h
r h rh:. url
bo
h a: V l r f u
roeo: m e n d e d
because
needed.
Satisfactory
bread:.in-'
strength
salts
dbbLw a; hr. p end if icis.l
of n a t u r a l
of
_i sc s: la ll cr
results
served; as
were
hie
Part I ; this indicates
wot
Zj
la
close].;.-,
annumt
obtained.,
of
a...
are
to
fulric
however,
when
criterion.
bi.o wo h e Lroc ;d; losses wer;
.onf: in t i lo i ry coubh Lion,
ah;.;
a ;tnp
c o w l
:iwr-e s ever-'- t’r m
hrese
.cn v:i th Ihe results
to possibility of
" c
in
in
cithc r the
test a l o n e , or both m:e dry and wot s n o a f - tests in
oar re- in " o •it ac celer' te ■’ a 'In • teee o f .nui one .
177
-1.1 c*.ioa _,li pi. values tonded to decrease v/ifch both oro —
tcln aivl cellulose .fabrics, the amount of chan-e vms low hi
too ac col era tod a drr* tecta,» and the
0 v/ere c o m l x c a„o . ^r»p
v ~n
- 1o
..±41,s
tcc. op ncviatiers
special finishec
in this tendency,
in "die fabrics.
probably resnltin • from
this measurement,
there-
c., ..(j ilvl not oc a sa«.LC.ac^ ory substitute for strength
teste ac a criterion for the behavior
-
'*'■- -LOS hi•-X*
o'*
fhe c'.an ;es in v;af or-s oluble nitropon entrac t atfi o from,
protoir.s and in vlccocity of cuorammonium solitionr
cellulose,
of
as shown in Part I, were of i n c iff ic lent mafni-
f rfc to substitute tnccc tests for sfcronyth d c ter.nina .ions
In ac color at o«l a pin.; tests o f the e::.‘osur c t lues c:ne.:rosat
h
study.
—
L/..O
»-4O ^ev-i. .
1f
O ii.
•>f ii pat, t o' 1 icpasirc,
>*rs .n>
ana Inaniuloy arc
c. . u o m •<.!.ie j.ae l’..c
orated a ;ln - line
o C
w.i-Uwj
s no
00
\
t~ ""T
<.<•"f' >• !,C 1/01*0
OiC sole a -in
fac-
our osod , an r>cc o 1 ~
OC: '+*
luO ionrs "niaer the condition *s»
be.ter '.bed in tliis study should nredict r o s u l t B obtained for
roasona.ao perlnbc c n a t u r a l
rice
a in ■ otta reW . —
vr
'w....tf._•O .-s.1• \
-4-«..v “*
for the:, a tost of this sort would bo applicablefho
method, ac cry posted here,
could be extended to in-
d u d Of cif :o^ a in - fnc tors , such ss
f-'^h'
fees,
in co hie a t i on v/i d
d c - o i r c , and l o r h h -
w ich
. anc. a ,
•- -. •••*. iit.-•
!.on
to .os —
f actors c 0 d - d ,
m e
been
m d / o r d
ho h h s
178
B I B ML I O G R A P H Y
(1)
American Society fox* Testing Material, Standard General
Methods of T e s ting Woven Textile Fabr-Tcs, SlfahdarcLs,
Part If A.'S.T.M. Designation ~D' 30-36, p. 1337 (1936),
(2 )
Ankeney, Peace Elizabeth., - M,S. Thesis, The Pennsylvania
State College, (1934).
(3)
Appel, V/ra. D. and Jessup, D. A., A c c e l erated Aging Test
for W e i g h ted Silk, Research P a p e r R P 855, Journal
o T Research, TTatTonal Bureau of Standards, 15, 601
-(1935).
(4)
Clibbens, D. A. and Geake, A., The M e a su rement of the
Fluidity of C o t t o n in Cuprammonium ’S oluti o n ,
Shirley Institute M e m o i r s , VI h X R 2 7 T » or ’Journal
Textile Institute, 1_9, T77 (1928).
(5)
Cook,
(6)
Follin, 0. and Vm, H., A System of Blood Analysis,
nal of Biological (Themi st r y , 351 ST> (1919) .
(7)
Follin, 0. and V7u, II., Ron-Protein Nitrogen, Notes on
Operation of the B v eTy n ~Photoe!ectric Colorimeter,
p. 24, (1939).
(3 )
Harris, Milton, Ph o t o - Chemic a 1 Decom p o si 11 on of S i l k ,
Research Paper R P 697 JournaX of* Research! Rational
Bureau of Standards, 13, 151-155, (1934).
(9 )
Harris, Milton and Jessup, D. A., Effect of pH on the
Photo-C hemical De composition of S i l k , Research
Paper RP 395, Journal of Research! Rational Bureau
of Standards, 7, 1179-84 (1931).
Geraldine Estella, - 1,1.S. Thesis, The Pennsylvania
State College, (1932).
Jour­
(1 0 )
Hawkins, Pearl Cecelia, - M.S. Thesis, The Pennsylvania
State College, (1932).
(11)
Kessinger, Polly Bell, - M.S. Thesis,
State College, (1934).
(12)
I"ease, R. T., Me a sure m e n t o_f the Apparent F l uidity of
9 tapers io ns oT Xe’l'lu1 o se In Cup raxnon Iurn S o jution ,
Researcli ’Paper R P ’TtCV2T, ’Journal of Research, IJational Bureau of S t a n d a r d s , 22, 271, (1939).
The Pennsylvania
179
(15)
Reimel, Mrs. Ann (Reimel) Young, - M.S. Thesis, The
Pennsylvania State College, (1931).
(14)
Roberts, Nellie Yyres, M.S. Thesis, The Pennsylvania
State Coller-e, (1930).
(15)
Stxxbblebine, Warren, - M.S. Thesis, The Pennsylvania
State College, (1940).
(16)
W oven Dress F a b r i c s , T esting and Reporting , Commercial
S t a n d a r d s - CS T>9-39.
(17)
Yoder, Bessie Mao, M.S. Thesis,
College, (1035).
The Pennsylvania State
Документ
Категория
Без категории
Просмотров
5
Размер файла
7 698 Кб
Теги
sdewsdweddes
1/--страниц
Пожаловаться на содержимое документа